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A B S T R A C T

The straight skeleton is a geometric object defined for polygons, or,
more generally, planar straight-line graphs (PSLGs). It was intro-
duced to computational geometry in 1995 by Aichholzer, Aurenham-
mer, Alberts, and Gärtner. Roughly, a straight skeleton is a planar
straight-line graph motivated by a particular shrinking process of a
polygon. It introduces a partition similar to that of a Voronoi dia-
gram.

We extensively study Aichholzer and Aurenhammer’s 1998 kinetic
triangulation-based algorithm to construct the straight skeleton for
PSLGs. In particular, we establish that their algorithm is not properly
defined for input that is not in general position. We introduce our
extensions which are required so that the algorithm works correctly
and terminates for all input — even when using only finite-precision
arithmetic.

We also present our implementation of the refined algorithm, Surfer,
and report on our extensive experiments. We provide strong experi-
mental evidence that the number of flip events is linear in practice;
the theoretical bound is in O(n3). Our measurements further es-
tablish that for practical input the algorithm runs in approximately
O(n log n) time and that our implementation is clearly the fastest
straight-skeleton code currently in existence, improving on Huber’s
implementation by a factor of 10 and on CGAL’s by at least a factor
linear in the input size.

This thesis builds on and extends work already presented at ESA2012,
the 20th Annual European Symposium on Algorithms in Ljubljana,
Slovenia (Palfrader, Held, Huber — On Computing Straight Skeletons
by Means of Kinetic Triangulations, [PHH12]).
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1
I N T R O D U C T I O N

The medial axis of a simple polygon is a subset of its Voronoi diagram
and consists of the points of the interior whose closest point on the
polygon is not unique.

The straight skeleton of a simple polygon was introduced in 1995 by
Aichholzer et al. [AAAG95b]. It is a structure not unlike the medial
axis. However, while the medial axis features segments of parabolas
in addition to line segments, the straight skeleton consists entirely of
line segments.

For reflex vertices of an input polygon the offset curves induced by
the medial axis will contain circular arcs. The offset curve induced
by the straight skeleton will, again, only have line segments. See
Figure 1.

Figure 1: Medial axis of a polygon on the left in comparison to a straight
skeleton on the right. Both the medial axis and the straight skele-
ton are shown in blue, induced offset curves in gray.

1.1 applications

Straight skeletons have applications in diverse fields of industry and
science. They can be used to efficiently compute mitered offset curves
in NC machining, using an approach similar to the construction of
an offset with round corners based on the medial axis. Tomoeda
et al. use the straight skeleton to create signs with an illusion of
depth [TS12]. Straight skeletons have been used in mathematical
origami to create fold or cut patterns or design pop-up cards [DO07,
DDL98, DDM00, ADD+

13, Sug13]. They can also be used in roof
design [AAAG95b, LD03] and terrain generation.

1



introduction

1.2 contribution

We investigate Aichholzer and Aurenhammer’s triangulation-based
algorithm for constructing the straight skeleton in detail [AA98].

We first describe their algorithm and then report on the requirement
of triangulating the entire plane and the technical details of handling
unbounded triangles.

Furthermore, we present our extensions which are required to cor-
rectly compute the straight skeleton of a general planar straight-line
graph without relying on an implicit assumption of general position
of the input. In particular, we describe how to handle parallel input
edges which lead to vertices moving at infinite speed in the kinetic
triangulation. Additionally, we provide solutions to the problem of
infinite loops during the handling of flip events. Such flip-event loops
are not only of theoretical interest and concern but actually happen
in practice. Our first approach requires exact arithmetic operations
and describes an ordering of events which avoids flip-event loops en-
tirely. The second approach also works with limited precision such
as standard IEEE 754 double-precision floating-point operations im-
plemented in common computing hardware.

We implemented the algorithm and our extensions in C and present
statistics based on our extensive test runs. In particular, we address
the question raised by Aichholzer and Aurenhammer of how many
flip events can be expected to occur in practice.

Our code, Surfer, is implemented as a library and supports two arith-
metic back-ends, namely IEEE 754 double-precision floating-point
and the extended-precision library MPFR [MPF]. While the algo-
rithm’s worst case complexity is in O(n3 log n), our tests indicate that
Surfer runs in O(n log n) time for all practical input. Memory con-
sumption is, as expected, in O(n). Additionally, Surfer is robust and
fast enough to process inputs of a few million vertices with floating-
point arithmetic in a matter of seconds.

Comparing Surfer with the straight skeleton code in CGAL [CGA]
shows that our implementation has several advantages: it is faster
by a factor linear in the input size, it can handle arbitrary PSLGs as
input and not just polygons with holes, and it requires only linear,
not quadratic, space. We also compare our code with Bone by Huber
and Held [HH11]. Even though their algorithm has a better worst
case complexity, we observe that in practice our code is faster by a
factor of approximately 10.
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1.3 outline

1.3 outline

We provide the definition of the straight skeleton and present an
overview of its properties and of algorithms that compute it in Chap-
ter 2. Aichholzer and Aurenhammer’s triangulation-based algorithm
is introduced in detail in Chapter 3 and we describe our implementa-
tion in Chapter 4. Chapter 5 covers problems of the original algorithm
when its input is not in general position. In particular, we cover how
to detect and resolve what we call flip-event loops. In Chapter 6 we
present experimental results, including observed count of flip events
and performance of our implementation. Chapter 7 summarizes our
results.
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2
S T R A I G H T S K E L E T O N S

2.1 definition

The straight skeleton of simple polygons was introduced by Aich-
holzer, Alberts, Aurenhammer, and Gärtner in 1995 [AAAG95b] by
looking at a particular shrinking process of a polygon. Each edge e
of a polygon P emanates a wavefront edge w towards the interior of
P such that w is parallel to e and moves away at unit speed. The
propagating wavefront is the set of such wavefront edges, joined in
a way that the angles at which edges of P meet are preserved in the
wavefront.

As the wavefront propagates, two types of topological changes can
occur: (i) wavefront edges shrink to zero length and vanish, and (ii)
wavefront vertices crash into an opposing wavefront edge. The for-
mer type of events are called edge events and the latter split events for
they cut a single interior region of the shrinking polygon into two,
or, equivalently, because they split the opposing wavefront edge into
two distinct line segments.

edge event

split event

Figure 2: Edge and split events.

The process ends when the shrinking polygon or polygons have all
collapsed and, accordingly, all wavefront-edges have vanished.

definition. During this wavefront propagation, the vertices of
the wavefront trace out straight-line segments. The straight skeleton
S(P) is the union of these traces.
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straight skeletons

To make it clearer whether one refers to elements of the input graph
or elements of the straight skeleton, Aichholzer et al. called edges of
the straight skeleton arcs and vertices of the straight skeleton nodes.

Figure 2 shows a simple input polygon P and several offset curves in
gray that represent the wavefront at distinct times in the propagation
process. The arcs of the straight skeleton in blue cover the traces of
wavefront vertices, and its nodes witness changes in the wavefront
topology. The figure furthermore highlights one edge and one split
event.

more general input. Aichholzer and Aurenhammer later ex-
tended the definition to consider a straight skeleton for any planar
straight-line graph (PSLG) [AA98].

Given that there is no interior per se, edges of the input graph G
emanate self-parallel wavefront edges on both of their sides. Vertices
that have a degree of one, called terminal vertices, cause an extra wave-
front to be sent out orthogonal to their incident edge.

Unlike in the case of a simple polygon, not all wavefront edges will
collapse eventually. Instead, a few of them will escape to infinity
causing some of the straight skeleton arcs to be rays instead of line
segments.

Figure 3 shows a straight skeleton of a planar straight-line graph.

Figure 3: Straight skeleton (blue) of a PSLG (black) with offset curves (gray).
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2.2 properties of straight skeletons

2.2 properties of straight skeletons

lemma. Let G be a planar straight-line graph. The straight skele-
ton S(G) consists entirely of straight-line segments (or rays).

proof. The arcs of S(G) are the traces of wavefront vertices during
the wavefront propagation process. Each wavefront vertex moves on
the angular bisector of the supporting lines of two input edges. Since
the angular bisector is a line, a straight skeleton arc is either a line
segment or, if it does not stop and goes to infinity, a ray.

lemma ([AAAG95a]). Let P be a simple polygon. Each edge e of P
induces one connected face in S(P) ∪ P.

proof. Each edge e of P emanates one wavefront edge w(e). The
area this wavefront edge sweeps over is called the face of e, or f (e).
At the start of the wavefront propagation, f (e) is equal to e. As the
wavefront propagates, w(e) moves towards the interior of the polygon
and f (e) grows accordingly. While a split event can cause w(e) to
split, it cannot disconnect f (e). Edge events also cannot disconnect
f (e). Once w(e) has disappeared it cannot re-appear again. Therefore,
f (e) is connected.

Similarly, the faces f (e) in the straight skeleton of a planar straight-
line graph are connected.

lemma ([AAAG95a]). Let P be a simple polygon with n vertices.
Then S(P) is a tree of exactly n− 2 nodes and 2n− 3 arcs and parti-
tions the interior of P into exactly n connected faces.

Note that the following proof assumes that all nodes of a straight
skeleton are of degree three. This can be achieved by creating a single
node for each topological change. Even if two or more nodes coincide
geometrically, we will not merge them and still consider them distinct
nodes.

proof. We already established that each edge of P induces one con-
nected face. Since P has n edges, there are n faces. Each point in the
interior of P will eventually be visited by the wavefront. Therefore,
S(P) partitions the interior of P into exactly n connected faces. Each
face is bounded by arcs of S(P) and one edge of P. Thus, S(P) is a
tree. This tree has n leaves and as all inner vertices have a degree of
three it follows that S(P) consists of n− 2 nodes and 2n− 3 arcs.
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straight skeletons

lemma ([AAAG95a]). Each face f (e) of S(G) ∪ G is monotone
with respect to e.

proof. Assume there is a line l, normal to e, that at one point x
leaves f (e) only to re-enter it at some other point y further from e.
Between x and y this line l intersects wavefront edges that are no
longer parallel to e. Thus, these wavefront edges will reach y before
w(e) does which contradicts the definition of y. Therefore, there is no
such line l and thus for every normal of e its intersection with f (e) is
connected. It follows that f (e) is monotone with respect to e.

2.3 roof model

Aichholzer et al. also presented a useful and interesting interpretation
of the straight skeleton of polygons [AAAG95a] and planar straight
line graphs [AA98]. Their 3D interpretation enables the use of the
straight skeleton in roof modeling and terrain generation.

They assign to each point (x, y) of the plane a value t which corre-
sponds to the time this point was first visited by the wavefront em-
anated from a graph G. The terrain of G is then the set of tuples
(x, y, t) for all (x, y). Interpreting t in 3D as an elevation above the
xy-plane gives rise to a sort of roof that sits on top of walls which are
the edges of G at t = 0.

This roof has interesting properties. The slope of all faces of the roof
is 1, the inverse of the propagation speed. For polygonal inputs, water
running down the roof always ends up on the outside; there are no
sinks for it to get trapped. A projection of the ridges and valleys of
the roof onto the plane t = 0 corresponds to the straight skeleton.

2.4 computing the straight skeleton

Unfortunately, straight skeletons are not just another instance of ab-
stract Voronoi diagrams [AAAG95a]. Therefore, well-established al-
gorithms to compute Voronoi diagrams cannot, in general, be used to
also construct straight skeletons. Instead, computing a straight skele-
ton requires special-purpose algorithms. We provide an overview of
such algorithms in this section.

simulating the shrinking process . When introducing the
straight skeleton structure, Aichholzer et al. suggested that the trivial
approach of simulating the shrinking process of the polygon might
work well in practice [AAAG95b]. This simulation of the wavefront
propagation process would work as follows: (i) Identify the first event

8



2.4 computing the straight skeleton

to change the wavefront topology. (ii) Fast-forward the simulation to
that event’s time and update the wavefront as required. (iii) Then
identify the next change of the wavefront topology. Repeat steps (ii)
and (iii) until the polygon has collapsed.

To find the next edge event, consider all edges and determine for each
edge e the point in time when it will intersect with its two neighbors
in a single point, or, equivalently, when it will have shrunk to a length
of zero. This computation of potential edge event times only needs
local information, and thus can be done in O(n) time for a polygon.

The next split event can be found by determining, for all pairs of
reflex vertices v and edges e, when v will crash into e. This requires
O(r · n) time, where r is the number of reflex vertices. Since r is in
O(n), the time of identifying all potential split events is in O(n2).

A complete shrinking process consists of O(n) events and therefore,
if finding the next event is repeated after each step, this algorithm
yields an overall complexity of O(n3) time and O(n) space.

A change in the topology of the wavefront only affects a limited
number of potential future events. Using a suitable priority queue
for all event times can, therefore, reduce the run-time complexity to
O(n2 log n) time at the cost of quadratic space.

The approach using the priority queue was implemented by Cacciola
for his CGAL submission [Cac12, Hub12].

finding intersections . The same year, Aichholzer et al. also
explored a second approach to finding split events [AAAG95a]. They
observe that a split event that is ignored will cause the polygon to
become self-intersecting.

They propose to test the shrinking polygon for self-intersections after
each performed edge event. Only if the test indicates that at a time t
the polygon is no longer simple a split event must have been missed.
Since the last event of the shrinking process will always be an edge
event, their method guarantees finding all split events.

One important contribution is that they also describe how to process
all split events before time t, using only the topology of the shrunk
polygon at t. Testing for self-intersection can be done in linear time
using Chacelle’s algorithm [Cha91] and thus, if the first split event is
the kth event, finding it using first exponential search and then binary
search can be done in O(n log k) time.

Overall, this algorithm can compute the straight skeleton of a sim-
ple polygon with n vertices in O(n2 log n) time, or, if r indicates the
number of reflex vertices, O(n · r log n) time.

9



straight skeletons

kinetic triangulation. First in 1996 and then again in 1998

Aichholzer and Aurenhammer presented a triangulation-based algo-
rithm [AA96, AA98]. We describe this algorithm in Chapter 3 and
discuss our implementation and details starting with Chapter 4.

eppstein and erickson. In their algorithm, Eppstein and Erick-
son use a sweep-plane approach on the roof model of a polygon P to
compute its straight skeleton S(P) [EE99].

They embed P in the plane z = 0 and then set up a possibly un-
bounded triangle in 3D for each input edge e. The base edge of a
triangle is e itself, the other two are defined to correspond to the in-
cident upward edges in the roof model. Furthermore, for each reflex
vertex v of G they create a ray supporting the valley in the roof model
that starts at v.

The sweep plane is parallel to, and starts at, the plane z = 0. As
it moves upwards, two types of events happen: (i) The sweep plane
meets the top of a triangle, finishing a face of the roof. This corre-
sponds to an edge event. (ii) The plane hits the intersection of a ray
with a triangle, indicating a split event. In both cases a limited num-
ber of triangles and rays need to be removed and added to the sets
the algorithm maintains.

To find the next edge event, triangles are kept in a simple priority
queue. Finding the next split event is more refined and involves both
ray shooting and lowest-intersection queries. To support ray shoot-
ing queries, Eppstein and Erickson use a data structure of Agarwal
and Matoušek [AM94]. For lowest-intersection queries they combine
fast data structures with high space complexity and slow data struc-
tures with little memory consumption to build a hierarchical struc-
ture which supports the required queries.

The result is an algorithm to compute the straight skeleton with a
space and time complexity in O(n1+ε + n8/11+ε · r9/11+ε) where r is the
number of reflex input vertices and ε is a positive real. This is cur-
rently the algorithm with the best worst-case complexity.

While Eppstein and Erickson present their work only for polygonal
input, their algorithm works equally for arbitrary planar straight-line
graphs.

motorcycle graphs . In the same paper Eppstein and Erickson
furthermore distill the most difficult part of constructing straight
skeletons, namely determining the fate of reflex vertices.

They consider a set of vertices, called motorcycles, on the plane. All
motorcycles start moving simultaneously from their individual initial
position and at their individual constant velocity. Should one motor-

10



2.4 computing the straight skeleton

cycle cross the track of a different motorcycle it immediately crashes
and stops moving. Motorcycles that do not crash will eventually es-
cape to infinity.

The motorcycle graph then is the set of line segments and rays that
correspond to the traces of all motorcycles.

Eppstein and Erickson also describe how to compute the motorcycle
graph in O(n17/11+ε) using a method similar to how they construct
straight skeletons.

cheng and vigneron. Cheng and Vigneron where the first to
use the motorcycle graph as a means to construct the straight skeleton
of simple polygons with holes [CV02].

They start by presenting an algorithm to compute the motorcycle
graph in O(n√n log n) time. Cheng and Vigneron note that the num-
ber of potential crashes of n motorcycles is in Ω(n2) but only a lin-
ear number actually occur. In order to avoid having to consider a
quadratic number of crashes, they partition the plane into cells using
a 1/√n cutting algorithm by Chazelle [Cha93]. This way, the only mo-
torcycles that can cause a bike to crash are those that currently share
its cell or traversed it in the past.

The authors then continue and describe how to compute the straight
skeleton of a polygon P from a motorcycle graph induced by the
reflex vertices of P. They employ a randomized divide and conquer
approach that results in an algorithm running inO(n log2 n) expected
time.

Combining both elements yields, for an input polygon with n vertices
of which r are reflex, an expected runtime in O(r√r log r + n log2 n).

huber and held. Huber and Held presented another algorithm
to construct the straight skeleton from the motorcycle graph [HH10a,
Hub12].

Like Aichholzer et al. [AA98], they simulate the wavefront propaga-
tion process and maintain a graph of the wavefront. Their core idea is
to combine this graph with those parts of the motorcycle graph that
have not yet been swept over by the wavefront. This results in a ki-
netic graph which consists exclusively of convex faces. Any change in
its topology is thus witnessed by the collapse of an edge of the graph.
An edge collapse, called an event, causes some topological change in
the kinetic graph. Huber and Held maintain a priority queue of event
times and process them in chronological order.

11
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Their algorithm has a worst case complexity in O(n2 log n). Exten-
sive tests performed with their implementation suggest a runtime in
O(n log n) for practical applications.
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3
T R I A N G U L AT I O N - B A S E D A L G O R I T H M

In their 1998 paper Aichholzer and Aurenhammer [AA98] built upon
their earlier work by extending the definition for the straight skele-
ton from polygons to planar straight-line graphs (PSLGs) and, fur-
thermore, presented an algorithm to compute the straight skeleton of
arbitrary PSLGs using a triangulation-based approach.

The algorithm simulates the wavefront propagation process over time.
The core idea is to maintain, at all times, a triangulation of the part of
the plane that has not yet been swept over by a wavefront edge. Each
change in the wavefront topology is witnessed by the collapse of a
triangle in this ever changing triangulation. Thus, by determining
the time when the next triangle will collapse, one can establish when
the next change in the wavefront topology will occur and advance the
clock accordingly.

3.1 initial wavefront

In more detail, the algorithm starts by computing the initial wave-
front from a given input PSLG G. Recall that each input edge e of
G emanates two wavefront edges parallel to e and that terminal ver-
tices emanate one wavefront edge orthogonal to their incoming input
edge.

The initial wavefrontW(G) is therefore created by duplicating edges
of G and creating initial zero-length edges for each terminal vertex
of G. These wavefront edges are appropriately linked together by
wavefront vertices, all of which have a degree of two.

Initially the vertex sets of G and W(G) cover the same points in the
plane. The same holds for their edge sets.

Each wavefront edge w is considered to have a speed of 1, moving in
a self-parallel manner. A wavefront vertex or kinetic vertex v joining
two edges w1 and w2 therefore moves along the bisector of w1 and
w2.

speed of kinetic vertices . In order to keep up with its inci-
dent wavefront edges, a wavefront vertex has to move at a certain
speed. Let α be the angle between the two wavefront edges incident

13



triangulation-based algorithm

at v and let s be the speed of v. An instance where α is less than π

is shown in Figure 4a. Given that the wavefront edge moves at unit
speed,

sin
(α

2

)
=

1
s

holds. Solving for s yields a speed of the kinetic vertex v of

s =
1

sin α/2
.

α

α/2
1

w1

w2

v

1

s

(a)

α
α/2

1

w1

w2

v

1

s

π − a/2

(b)

Figure 4: A kinetic vertex v moves on the bisector between its incident wave-
front edges at a speed dictated by the angle between its incident
wavefront edges.

If the angle between wavefront edges is larger than π, as depicted in
Figure 4b, then

sin
(

π − α

2

)
=

1
s

.

Since sin(γ) = sin(π − γ) for all angles γ, this actually solves to the
same speed for v, so again

s =
1

sin α/2
.
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3.2 kinetic triangulation
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Figure 5: The speed of a kinetic vertex is a function of the angle between its
defining wavefront edges.

As shown in Figure 5, this function evaluates to 1 when α is π and
goes towards infinity when the angle is either very small or almost a
full circle. This matches our expectation that a vertex can move slowly
when it moves orthogonal to the wavefront, in the same direction as
the wavefront propagation, and has to move faster the closer it moves
in a direction that is more parallel to its defining wavefront edges.

3.2 kinetic triangulation

Once the initial wavefront has been constructed, a constrained tri-
angulation T of the vertex set of G is computed. We require that
all edges of G exist as edges of the triangulation. The triangulation
edges that do not already exist in G are called spokes.

The kinetic triangulation K is created by adding the spokes of T to
W(G). Care must be taken to attach spokes to the correct vertices
of W(G) such that immediately following the start of the wavefront
propagation process the part of the plane that now has been swept
over byW(G) is void of any triangulation edges.

As previously stated, terminal vertices of G will cause edges with an
initial length of zero to be added to the wavefront. When the propaga-
tion process starts, these edges will no longer be in their degenerated
state but will instead have positive lengths. The faces incident to
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triangulation-based algorithm

these edges will now be quadrilaterals instead of triangles because T
only triangulated the initial vertex set.

To achieve a partition into triangles only, additional spokes are added
to the initial kinetic triangulation: for each terminal vertex v of G a
spoke s is added at one of the vertices ofW(G) that corresponds to v.
This additional spoke is added in such a way that once the wavefront
propagation has started, the face incident at the extra edge emanated
from v is not a quadrilateral. Instead, the area which would have been
covered by the quadrilateral is split into two triangles by s. Therefore,
once the propagation process has started, the part of the plane which
has not yet been visited by the wavefront is a correct triangulation as
required.

The signed area of a triangle of K is a function of time. Since all
wavefront vertices move at constant speed this function is a polyno-
mial quadratic in time and therefore its roots, i. e., the points in time
when the triangle collapses, can be computed using standard meth-
ods for solving quadratics. (Details are discussed in Section 4.3.)

3.3 wavefront propagation process

The collapse times of all initial triangles are computed and triangles
which collapse at a finite point in time are put into a priority queue
Q. Whenever a triangle collapses, we have to update K accordingly.
A triangle can collapse in one of three ways:

(a) A vertex moves over a spoke s. This type of event is called flip
event: the spoke s is removed from K and the other diagonal
of the remaining quadrilateral is added as a new spoke, as de-
picted in Figure 6. We remove the two original triangles from Q
and add the two newly created triangles accordingly.

(b) A vertex v crashes into an opposing wavefront edge e. This split
event is similar to the flip event mentioned previously as in both
cases a triangle’s vertex comes to lie on the vertex’s opposing
edge. It is also fundamentally different, however, since in a split
event this vertex does not move over a spoke but instead crashes
into the opposing edge, which is a wavefront edge. This crash
causes the wavefront edge to be split into two parts.

Two new vertices, v′1 and v′2, replace v, moving away from the
crash location. The collapsed triangle ∆ is removed from K.
Other triangles that were previously incident to v are updated
to now be incident to either v′1 or v′2 and their collapse times in
Q are updated. See Figure 7.
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v

v1
v2 ∆1

∆2

v3

s

(a) Before a flip event.

v
v1

v2

v3

s

(b) ∆1 collapses.

v
v1

v2

v3

s′

(c) After processing the flip event.

v
v1

v2

v3

s′

(d) Some time later.

Figure 6: Flip event: Vertex v moves over the spoke s.

(a) Initial situation.

e

∆
v

(b) Before the split event.

split event

(c) Vertex v crashes into e.

v′1
v′2

(d) Some time later.

Figure 7: Split event: Vertex v crashes into wavefront edge e. Input edges are
drawn heavy and in black, straight skeleton arcs and kinetic ver-
tex traces in light blue, wavefront edges in red, and triangulation
spokes are dotted in magenta. The wavefront propagation process
is only shown on one side of the input.

17



triangulation-based algorithm

(c) A triangulation edge collapses to zero length, causing two ver-
tices, v1 and v2, to collide. If the collapsing edge was a wave-
front edge this corresponds to an edge event as shown in Figure 8,
otherwise it is a special case of a split event – one where two
opposing vertices crash directly into one another, see Figure 9.
Sometimes this is called a multi split event [Hub12].

In the case of an edge event, v1 and v2 merge into a new vertex
v′ with new direction and speed. In the case of a multi split
event, v1 and v2 are replaced by vertices v′1 and v′2, moving
away from the collapse point in different directions, just like in
a normal split event. If one of the two new vertices is a reflex
vertex again, the event is called a vertex event [EE99].

In either case the collapsed triangle is removed from Q and
collapse times of all triangles now incident to v′ or v′1, v′2 are
updated in Q.

During the wavefront propagation process we have a concept of time.
Time is monotonic, that is, it only moves forwards, never backwards.
The propagation process starts at time zero.

When we compute collapse times, for instance during initial set up of
the priority queue or during event handling when we update trian-
gles, we are only interested in collapse times that happen either now
or in the future. That is, we disregard any solution for a triangle’s
collapse time that is before the current time in the propagation pro-
cess. If a triangle only has collapse times in the past, then we set its
collapse time to infinity.

Once all triangles have collapsed and no more entries with finite col-
lapse time remain in Q the propagation process ends. The nodes of
the straight skeleton S are made up of the initial set of vertices of K
at time zero and of all vertices that got stopped and replaced during
an event, at their final position.

The arcs of the straight skeleton are the line segments traced out by
kinetic vertices over their lifetime. Any kinetic vertices that remain in
K at the end of the propagation process correspond to rays to infinity
in S .

We show the steps of the wavefront propagation, including kinetic
triangulation, of an example in Appendix A, Figure 48.
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(a) Initial situation.

e

v1

v2

∆

(b) Before the edge event.

edge event

(c) Edge e has shrunk completely. (d) Some time later.

Figure 8: Edge event: Wavefront vertex e shrinks to a length of zero as two
neighboring vertices collide.

(a) Initial situation.

v1

v2

∆1 ∆2

e

(b) Before the multi split event.

event
multi split

(c) Edge e has shrunk completely.

v′1 v′2

(d) Some time later.

Figure 9: Multi-split event: Vertices v1 and v2 crash into each other as their
connecting spoke shrinks to a length of zero and the two incident
triangles collapse.
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3.4 complexity

3.4.1 Space complexity

Let G be an input graph with n vertices of which t are terminal ver-
tices. The triangulation T will consist of 2 · n− 2 triangles. For creat-
ing K we add one extra triangle per terminal vertex, so K will initially
consist of 2 · n + t− 2 triangles.

Edge and split events only remove triangles from K; they never cause
any triangles to be added. Flip events re-triangulate a quadrilateral,
replacing two triangles with two different ones. Thus, the number
of triangles is not increasing over time and at no point we will need
to keep track of more than 2 · n + t− 2 ∈ O(n) triangles. This also
limits the size of the priority queue which keeps track of collapse
times. Furthermore, the O(n) bound trivially extends to the number
of kinetic vertices we have to maintain at any time.

Since edge and split events reduce the number of triangles in K and
nothing ever increases the size of K, an O(n) upper bound on the
number of edge and split events can be deduced. As mentioned be-
fore, the nodes of the straight skeleton are the union of the vertex set
of W(G) at time zero and the set of nodes created during edge and
split events. Therefore, the number of straight skeleton nodes is in
O(n) and, since the straight skeleton is a planar graph [AA98], the
size of the entire straight skeleton is linear in the input graph’s size.

For an input graph G with n vertices the algorithm’s overall space
complexity is therefore in O(n).

3.4.2 Run-time complexity.

To analyze the run-time complexity of Aichholzer and Aurenham-
mer’s triangulation-based algorithm, we have to look at its different
stages.

setup. For an input graph G with n vertices the cost of construct-
ing the initial wavefront and kinetic triangulation is dominated by the
cost of actually triangulating the vertex set of G. Since G can be an
arbitrary planar straight-line graph and not just a simple polygon, we
know the run time complexity of triangulations to be in O(n log n).

We need a priority queue to provide us with information on which
event to handle next. The elements of this queue are the triangles of
K, and the priorities are the triangles’ collapse times: the earlier the
collapse, the sooner we have to handle the event.
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We assume our priority queue has the following properties: Initial
setup with n elements runs in O(n log n). Removing any known
element, not just the next one, can be done in O(log n). Likewise,
updating a known element to a new key costs O(log n).

Computing the collapse times of all kinetic triangles is done in O(n)
since we have O(n)-many triangles and computing one collapse time
can be done with a constant amount of work. Then constructing the
initial priority queue costs Θ(n log n).

edge and split event handling . For any event, de-queueing
it from the priority queue is O(log n) work, as discussed previously.
However, for edge and split events this cost is dominated by the other
damage such an event can cause: they both will replace vertices in up
to O(n) triangles. This makes it necessary to re-compute the collapse
times of all these triangles and to update their position in the priority
queue. Therefore, the complexity of handling an edge or a split event
is in O(n log n).

We already established previously that the number of edge and split
events is bound by O(n). Thus, the total cost of handling all non-flip
events is O(n2 log n).

flip event handling . A flip event replaces two triangles with
two different ones. Removing two triangles and adding two new tri-
angles, or, equivalently, updating the collapse times of two triangles
will cause only O(log n) work per event. This leaves us to consider
what the upper bound on the number of flip events is.

The number of kinetic vertices that exist during one run of the algo-
rithm is in O(n): Let k0 be the number of kinetic vertices that are
created during the initial set up of the wavefront. It is easy to see that
k0 ∈ O(n): The input graph G is a planar graph with n vertices. Each
of its O(n) edges contributes two edges to W(G) and each each of
its O(n) terminal vertices contributes one edge to W(G). Therefore,
the number of edges inW(G) is linear. All wavefront vertices have a
degree of two, so their number is also linear, that is, k0 ∈ O(n). Any
edge or split event can add one or two new kinetic vertices. Since
the number of edge and split events is bounded by c · n for a fixed
constant c, the number of kinetic vertices added during the entire
wavefront propagation process is bounded as well. This yields an
upper bound of O(n) for the number of kinetic vertices.

Kinetic vertices move at constant speed along straight lines. The area
spanned by three points in the plane moving at constant velocity is
a quadratic polynomial in time. Therefore, three such points become
collinear exactly once, twice, or never and so a kinetic triangle of
three kinetic vertices will collapse at most twice.
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Let k be the number of kinetic vertices. Then there can be at most (k
3)

different triangles since that is the number of possible combinations
of three elements out of k.

From the fact that k is in O(n) and that each triangle collapses at most
twice we can deduce that the number of flip events is in O(n3).

Therefore, the total cost of handling all flip events is in O(n3 log n).

Note that this argument assumes that the input is in general position.
For instance, three vertices can also be collinear throughout the entire
propagation process because they move in the same direction and at
the same speed and are collinear in their initial position. Even if the
initial triangulation will not have a triangle of three such vertices —
since a valid triangulation has no collapsed triangles — further events
may cause such a triangle to exist multiple times. See Section 5.2 for
a discussion on arbitrary input.

lower bounds . We have just shown that handling all non-flip
events requires at most O(n2 log n) work. For specific triangulations
this bound is actually tight: Huber [Hub12, page 48] provides a con-
vex polygon with a given triangulation that will result in Ω(n) edge
events each affecting Ω(n) triangles (Figure 10). It is, however, not
clear whether there exists an input that requires Ω(n2 log n) work for
handling edge and split events for all possible triangulations.

The upper bound for the number of flip events is in O(n3), as dis-
cussed previously. The best known lower bound is a linear factor be-
low that: Huber and Held give a simple polygon in [HH10b] which
causes Ω(n2) many flip events for all valid triangulations (Figure 11).
Even re-triangulating during the propagation process would not im-
prove the run-time behavior. Finding tighter bounds is an open prob-
lem.

Note that O(n3) is a worst-case bound. In practice, for real-world
input, we have seen far more docile numbers for flip events. See
Chapter 6.

summary. The potential cost of flip-event handling dominates all
other parts of the algorithm. Hence the overall upper bound for
the run-time complexity of the triangulation-based algorithm is in
O(n3 log n). This is the best known upper bound.
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S(P)

P

Ω(n) edge events

Ω(n) triangles

e1
e2

ek
. . .

Figure 10: Even a convex polygon can have Ω(n) many edge events that
each affect Ω(n) triangles. (Based on figure from [Hub12].)

N1
N2

. . .
Nm

E1
E2 . . .

Ek

E1 E2

W

Figure 11: This particular input causes a total of Ω(n2) flip events. By con-
struction no triangulation is possible that results in fewer flips.
(Based on figure from [HH10b].)
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4
I M P L E M E N TAT I O N

We implemented the triangulation-based algorithm outlined in the
previous chapter as a library. This library, named Surfer, is written
in the C programming language. We created two frontends that
make use of it: The first is a command line tool called surf which
loads an input graph and writes out the straight skeleton. The sec-
ond one, surfgl, is a GUI program which, given an input graph,
can step through the individual events of the wavefront propagation
process. At each step it shows the current state of the algorithm, in-
cluding current wavefront, kinetic vertices and triangulation, straight
skeleton nodes and arcs, and the next collapsing triangle. It uses
OpenGL [OGL] rendering and allows zooming to investigate areas of
particular interest.

Output formats supported by surf are (i) the XML based format
used by the Ipe [Che] drawing editor, (ii) the format used by Geo-
Gebra [Hoh], an interactive geometry application, and (iii) PNG, the
portable network graphics format. The PNG output is the only non-
vector format: we raster the straight skeleton and the input graph
onto a 8192 pixels by 8192 pixels large image. Its main purpose is
to be able to quickly compare the skeletons produced by surf with
those produced by other implementations like Huber’s Bone [HH11],
which we modified to support the same output format. Furthermore,
the tool can be run in a mode where it will not write any output
at all. That feature is useful when one only cares about timing the
computation of the straight skeleton itself.

4.1 data structures

In order to represent the kinetic triangulation, our implementation
keeps a list of kinetic vertices and a list of kinetic triangles. Further-
more, we maintain a list of straight skeleton nodes created so far.

Vertices move with time, at linear speed. So we keep for each vertex
its velocity and an origin, which is the position in the plane where
it was at time zero – or would have been if it had already existed
at that time. We also store the direction of its incident wavefront
edges which is required to compute the direction of a new wavefront
vertex during event handling. Additionally we store two timestamps,
one for the time at which the vertex was created and one where it
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stopped. Kinetic vertices start and stop in skeleton nodes. Therefore
we include a reference to the respective skeleton nodes in the vertex
structure as well.

A straight skeleton node is nothing more but a set of coordinates
in the plane and any context about its setting in the actual straight
skeleton graph, such as which arcs are incident to it, can be derived
from the information in the kinetic vertex list.

struct sknode_t {

vector_t pos;

};

struct kvertex_t {

vector_t o, v, ccw_wavefront, cw_wavefront;

real_t starts_at, stops_at;

sknode_t* start_node, stop_node;

};

For each triangle we store three pointers to its incident vertices and
three pointers to its neighbor triangles. A neighbor pointer that is
null indicates a wavefront edge on this side of the triangle.

struct ktriangle_t {

kvertex_t *v[3];

struct ktriangle_t *n[3];

int heap_position;

};

Elements in a triangle’s vertex and neighborlist are ordered counter-
clockwise and in such a manner that v[0] is opposite of n[0]. Addi-
tionally we store a reference to this triangle’s location in the heap that
represents our priority queue. This is useful when we need to find,
replace, or update a triangle that is not at the top of the heap. This
reference requires updating whenever the priority queue re-orders
elements.

4.2 loading and triangulating the input

Our code supports loading of input graphs in several different for-
mats customarily used in computational geometry. This includes the
format used by the Ipe [Che] drawing editor, the various formats used
by Martin Held’s large set of test data and the format understood by
Shewchuk’s excellent triangulation code, triangle [She96]. For some
of these formats we use parsing code generously provided by Stefan
Huber.
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After loading the input, our library scales and translates the graph
so that all vertices lie in a square of edge length two centered at the
origin.

We then use triangle to construct a constrained triangulation of the
PSLG. However, the Surfer library has been written with modularity
in mind, so replacing triangle with a different implementation is
possible.

Shewchuk’s library already directly computes a triangle list with tri-
angle adjacency links, so creating the set of kinetic triangles from that
is straight forward. Some additional processing is needed, however,
because triangle constructs a triangulation of the input’s convex hull
only. We need to add the extra triangles to attain a triangulation of
the entire plane ourselves. See Section 4.6 later in this chapter.

As mentioned in Section 4.1 previously, we store the wavefront implic-
itly in the set of triangles: If a triangle’s neighbor pointer on an edge
is null, then this edge is a wavefront edge. The adjacency relations
that the triangulation code produces will still list neighbors across
input edges. In order to create the initial wavefront, we clear the
neighborhood relation at all triangle edges that correspond to PSLG
edges.

Next, we have to add extra triangles for terminal input vertices as
already described in Section 3.2.

Once we constructed the initial kinetic triangulation, we create all
kinetic vertices, computing their speed as outlined in Section 3.1.

As the last step before we can start the wavefront propagation process,
we need to initialize the priority queue. We add all kinetic triangles
with their corresponding collapse times.

4.3 collapse times

During the wavefront propagation process we constantly have to up-
date the kinetic triangulation K in order to guarantee its consistency.
The points in time when we have to update K correspond to trian-
gles collapsing to either straight-line segments or to just points in the
plane. It is important that these events are handled in the correct
order since an event at time t can (i) cause an event previously sched-
uled to happen at time t′ ≥ t to no longer happen and (ii) can create
new events at times t′ ≥ t.

To process events in their correct order, we maintain a priority queue,
a min-heap, with collapse times of all triangles in K as its key.
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In this section we describe how to compute the collapse time of a
triangle in different ways.

4.3.1 Collapsing area

For a given triangle ∆ of our kinetic triangulation K we know that its
vertices v1, v2, v3 move at constant speed and direction. We can thus
parameterize the position of vi at time t as

vi(t) = oi + t · si ,

where oi is the vertex’s position at time t = 0 and si is its velocity
vector. By vi,x and vi,y we refer to the x respectively y coordinates of
vi. Similarly, with oi,x, oi,y, si,x, and si,y we mean the coordinates of
the position and velocity vectors.

Note that not all kinetic vertices will already exist at time zero. We
nevertheless define vi this way. For a vertex that is created at a later
time we need to compute its position o, that is, the position where
it would have been at t = 0, based on where it is at the time of its
creation and its velocity.

As already summarized in Chapter 3, in the general case in order to
compute the next event caused by ∆, we have to consider the area
A∆(t) of ∆ over time t. The signed area can be computed using the
determinant method for triangles in the plane:

A∆(t) =
1
2
·

∣∣∣∣∣∣∣∣
v1,x v1,y 1

v2,x v2,y 1

v3,x v3,y 1

∣∣∣∣∣∣∣∣ .

Expanding the determinant yields

A∆(t) =
1
2
· ( (v1,x v2,y + v2,x v3,y + v3,x v1,y) +

−(v1,y v2,x + v2,y v3,x + v3,y v1,x) ).
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Note that in this term vi,x and vi,y are still functions of time. Using the
definition of vi(t) provided above, this expands into the somewhat
ungainly quadratic in t:

A∆(t) = 1
2 · ( t2 · ( s1,y s2,x + s1,x s2,y + s1,y s3,x

− s2,y s3,x − s1,x s3,y + s2,x s3,y ) +

t · ( o2,y s1,x − o3,y s1,x − o2,x s1,y

+ o3,x s1,y − o1,y s2,x + o3,y s2,x

+ o1,x s2,y − o3,x s2,y + o1,y s3,x

− o2,y s3,x − o1,x s3,y + o2,x s3,y ) +

( − o1,y o2,x + o1,x o2,y + o1,y o3,x

− o2,y o3,x − o1,x o3,y + o2,x o3,y ) ).

The roots of this function are the times when the triangle ∆ collapses
and causes events.

4.3.2 Collapsing edges

Another approach to consider is looking at edge collapse times: when-
ever a triangle’s edge shrinks to a length of zero, then clearly the
triangle’s area also becomes zero.

Consider two kinetic vertices, v1 and v2, and the line segment be-
tween them as a vector −⇀e = −−⇀v1v2 = (o2 − o1) + t · (s2 − s1). The
square of its length is

d2(t) = −⇀e · −⇀e .

The zero of the derivative of d2 gives us the time of closest approach
as a simple fraction of two dot products:

te =
(s1 − s2)(o2 − o1)

(s1 − s2)(s1 − s2)
.

If v1 and v2 are the endpoints of an edge e and e is a wavefront edge,
we know that they will eventually coincide, have coincided in the
past1, or are running in parallel. Therefore, if the denominator of the
fraction is not zero, we can easily compute the collapse time te of e.
If e is not a wavefront edge, then it is not guaranteed that it will ever
collapse. As such, we have to evaluate d2 at time te. If a comparison
to zero yields true, then the edge will collapse at time te. Otherwise
it will never collapse.

Obviously, not all types of triangle collapses are witnessed by collaps-
ing edges. As such, this method cannot help us to compute the next
collapse time of a given triangle in all cases.

1 Note that in the past also includes times before time zero, that is, before the wavefront
propagation even started.
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4.3.3 Vertices crashing into edges

In triangles that have at least one wavefront edge we can leverage the
fact that wavefronts propagate at unit speed in a self-parallel man-
ner to compute the time when the opposing vertex v crashes to the
wavefront edge e or crosses over its supporting line. See Figure 12.

e

v

~s
~s′

M

~n

Figure 12: Vertex v moving towards wavefront edge e.

Let −⇀s be the velocity of v and let −⇀n be a unit normal of e in the

direction of its propagation. Let
−⇀
s′ be a projection of −⇀s onto −⇀n .

Then
−⇀
s′ approaches e at a speed of∣∣∣−⇀s′ ∣∣∣ = −⇀s · (−−⇀n ).

While v approaches the wavefront edge e, so, likewise, e moves to-
wards v. Wavefront edges move at unit speed in a self parallel man-
ner, thus the combined speed of approach is 1−−⇀s · −⇀n .

The distance between v and e is
−⇀
Mv · −⇀n where M is an arbitrary point

on the supporting line of e and
−⇀
Mv is the vector from M to v.

Putting it all together, we can compute the time tv of when v lies on
the supporting line of e as

tv =

−⇀
Mv · −⇀n

1−−⇀s · −⇀n ,

where v is the position of the kinetic vertex at time zero and M is a
point on the supporting line of e at time zero.

4.3.4 Motivation for using different methods

Computing the roots of the quadratic function from Section 4.3.1 can
become quite inaccurate depending on its numerical conditioning.
Consider the equilateral triangle ∆ in Figure 13. It is bounded by
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three wavefront edges and thus will collapse when all three of its
vertices become coincident in the center of ∆.

v

e

∆

Figure 13: A collapsing triangle.

We plotted the area of ∆ as a function of time as the blue graph in
Figure 14. When the area becomes zero at time 5/

√
3, the triangle

collapses and causes a change in the wavefront topology. Obviously,
even slight numerical inaccuracies might cause our function to be
different. Such a difference could result in the quadratic function
having no real roots. Therefore, we would miss this event entirely.

2.5 3.0
time

−1

0

1

2

f(
ti

m
e)

∆ collapses

Figure 14: Computing collapse times of a triangle using two different strate-
gies. The blue parabola represents the signed area of the triangle
from Figure 13 over time, the green line shows the distance from
the kinetic vertex v to the wavefront edge e.
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A plot of the distance from the kinetic vertex v to its opposite wave-
front edge e is shown in green in Figure 14. This is the approach for
finding collapse times described in Section 4.3.3. Since v is approach-
ing e, this linear function will evaluate to zero at one point in time.
Slight errors in input will only result in slight errors for the collapse
time, not in missing the collapse entirely.

Avoiding the area method for finding collapse times therefore re-
sults in a more robust implementation of the triangulation-based al-
gorithm.

4.4 event classification

In the previous section we outlined different approaches to compute
the collapse times of triangles. We have, however, not yet described
when to use which approach.

Keep in mind that the purpose of determining the collapse time of
a triangle is to process the change in the kinetic triangulation and
possibly the wavefront itself at this particular time.

Therefore, when populating the priority queue, we try not only to
find the collapse time for a given triangle but also, if possible, to
determine the type of event this will be. For this purpose we can use
additional information we can learn from the kinetic triangulation K,
such as which edges of a triangle are wavefront edges and which ones
are spokes.

We can distinguish the following cases based on how many edges of
a triangle are wavefront edges:

(a) If a triangle ∆ has three wavefront edges, then the area it covers
essentially is a simple polygon. This polygon has been split off
from the rest of the as yet unvisited plane and is completely in-
dependent of any outside events. As the wavefront propagates,
the polygon’s area shrinks until it collapses entirely. At this
particular time all three wavefront edges collapse to zero length
simultaneously.

For triangles in this category we compute collapse times using
the edge collapse time method described previously.

(b) A triangle with exactly two wavefront edges can collapse in two
distinct ways. Either exactly one of the two wavefront edges
collapses to zero length or all three of its sides collapse at the
same time.
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To find the collapse times of these triangles, we use the earlier
of the two edge collapse times of the wavefront edges, ignoring
any times in the past.

(c) Collapses for triangles with exactly one wavefront edge e appear
in one of two forms:

• The wavefront edge can collapse, causing a classic edge
event.

• Consider the vertex v which lies opposite the wavefront
edge e. This vertex can crash into e or sweep across its
supporting line.

In order to determine which of these two cases happens, we
compute both the edge collapse time te of e, as well as the ver-
tex crash time tv of v, using two of the procedures previously
discussed. As always, we ignore collapse times in the past.

If te is earlier than tv or if te equals tv, then this event is an edge
event, as e collapses at that time. If tv happens strictly earlier
than te, then this event is either a split event or a flip event. In
order to classify this event, we compute the length of all sides
of the triangle at time tv. If the longest edge is the wavefront
edge, it is a split event, otherwise it is a flip event.

(d) A triangle that is bounded only by spokes can either collapse
due to a flip event, that is, a vertex can sweep across its oppos-
ing spoke, or because one of its spokes collapses to zero length.

For each edge of a triangle we compute its collapse time, if
it exists. We also compute the time when the triangle’s area
becomes zero using the determinant approach.

If the time obtained from the determinant approach is earlier
than any edge collapses this triangle will cause a flip event at
that time.

In the other case two opposing vertices will crash into each
other as a spoke collapses. Some authors, such as Huber in
[Hub12], define this to be a split event because it involves at
least one reflex wavefront vertex. For our purposes we will still
call this an edge event since its handling is identical to the case
where the vanishing spoke was indeed an edge of the wave-
front.
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4.5 event handling

4.5.1 Handling Edge Events

Our procedure to handle edge events can deal with true edge events,
where a wavefront edge collapses to zero length, as well as with false
edge events, sometimes called multi split events, where a spoke col-
lapses as two opposing wavefront vertices crash into one another. Fig-
ure 15 sketeches the situation before a true edge event.

∆

a

b

v2

v1

e

Figure 15: Edge event: Edge e is about to collapse.

The algorithm’s purpose is to stop the two wavefront vertices that
have now become incident as their connecting edge collapsed, to cre-
ate a new kinetic vertex, and to remove the collapsed triangle ∆ from
the triangulation. Furthermore, it needs to maintain the consistency
of our kinetic triangulation.

If the collapsing edge was not a wavefront edge we also schedule the
handling of the incident neighbor to happen immediately.

Algorithm 1 briefly sketches our event handling code. The collaps-
ing edge is passed to the function as an index in the given triangle’s
neighborlist. First, it fetches references to the two colliding vertices v1

and v2 and then marks them as stopped using the stop_kvertices()

function. If necessary, this function also creates a new straight skele-
ton node, sk_node, at the position of these vertices and adds it to
the global node list. It amends information stored with v1 and v2

to record the node at which they have stopped. Then a new kinetic
vertex v is created using compute_new_kvertex(). That function also
tags the new vertex as having started in sk_node.

In the second part of the procedure we have to update the neighbor-
hood relations of the vanishing triangle’s neighbors: in the neighbor-
hood list of a we replace ∆ with b; in b we replace ∆ with a.

The helper function find_index_of_t(neighbor, triangle) is used
to find the position of neighbor in triangles’s neighborlist.
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4.5 event handling

Algorithm 1 Edge Event Handling

1: procedure handle_edge_event(t, e, now)
2: v1← t->v[(e+1)%3] . Find incident vertices
3: v2← t->v[(e+2)%3]

4: sk_node← stop_kvertices(v1, v2, now)

5: v← compute_new_kvertex(

v1->ccw_wavefront, v2->cw_wavefront, now, sk_node)

. Update neighborhood relationships
6: a← t->n[(e+1)%3] . Find neighboring triangles
7: b← t->n[(e+2)%3]

8: if a 6= null then
9: a->n[ find_index_of_t(a, t) ]← b

10: replace_kvertex_ccw(a, v2, v)

11: end if
12: if b 6= null then
13: b->[ find_index_of_t(b, t) ]← a
14: replace_kvertex_cw(b, v1, v)

15: end if

16: n← t->n[e] . Handle wavefront edge
17: if n 6= null then
18: n->n[ find_index_of_t(n, t) ]← null

19: schedule_immediately(n)

20: end if
21: end procedure

The replace_kvertex_*() procedures replace all references to the old
vertices v1 or v2 with references to the newly created vertex v, iter-
ating around the pivot vertex either clockwise or counter-clockwise.
For any affected triangle it needs to re-compute its collapse time and
update the priority queue accordingly.

Lastly, if the vanishing edge was not a wavefront edge we inform
our event scheduling code that it should handle the collapse of the
neighbor on the edge e next. It too will have an edge event at the
same time and processing immediately ensures that we do not run
into any issues with globally inconsistent triangulations.

Ignoring potential memory management costs when creating a new
straight skeleton node, all operations but one in this algorithm run in
constant time. The one exception is replace_kvertex_*(): If n is the
number of triangles in K, then the number of triangles potentially
sharing v1 or v2 is in O(n). The cost of updating a vertex in a sin-
gle triangle is constant and updating its collapse time in the priority
queue is logarithmic. Therefore the time complexity of an update of
all triangles affected by a single edge event combined is in O(n log n).
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Since this dominates all other cost, the time complexity of handling a
single edge event also is in O(n log n).

4.5.2 Handling Split Events

In a split event a vertex v crashes into its opposing wavefront edge.
We have outlined the procedure to handle such an event in Algo-
rithm 2. The vertex v is stopped at this point, a new skeleton node is
produced, and two new vertices, va and vb, are instantiated.

Consider the area that is not yet covered by the wavefront and that
the collapsing triangle was part of. If, prior to the split event, this
area was simply connected, then the split event has cut it into two
disconnected regions. One of the two new vertices va and vb is in one
of the disconnected regions, the other vertex is in the other.

As before, we have to make sure that the kinetic triangulation remains
valid. Let ∆ be the triangle that collapsed and let a and b be neighbors
of ∆ as depicted in Figure 16. Then in both a and b the spoke that
was previously shared with ∆ now becomes a wavefront edge. These
two new wavefront edges partition e and replace it in the wavefront
set.

∆

e

a bv

v1

v2

(a)

a

b

v1

v2

va vb

(b)

Figure 16: Split event: (a) immediately before vertex v crashes into e; (b) the
situation after the split.

Furthermore, all triangles incident to v have to be updated to now be
incident to one of va or vb, depending on which side of the divide
they are.

The time complexity for handling a single split event is identical to
the edge event described above and for the same reason: Marking
v stopped, creating a new skeleton node and adding two new ki-
netic vertices is dominated by the potential cost of touching a linear
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number of triangles, those previously incident to v, each requiring an
update in the priority queue for a total of O(n log n) work.

Algorithm 2 Split Event Handling

1: procedure handle_split_event(t, e, now)
2: v← t->v[e]

3: v1← t->v[(e+1)%3]

4: v2← t->v[(e+2)%3]

5: sk_node← stop_kvertex(v, now)

6: va← compute_new_kvertex(

v->ccw_wavefront, v2->ccw_wavefront, now, sk_node)

7: vb← compute_new_kvertex(

v1->cw_wavefront, v->cw_wavefront, now, sk_node)

8: a← t->n[(e+1)%3]

9: a->n[ find_index_of_t(a, t) ]← null

10: replace_kvertex_ccw(a, v, va)

11: b← t->n[(e+2)%3]

12: b->[ find_index_of_t(b, t) ]← null

13: replace_kvertex_cw(b, v, vb)

14: end procedure

4.5.3 Handling Flip Events

v

v1
v2 ∆1

∆2

v3

s

(a) Before a flip event

v
v1

v2

v3

s

(b) If the event had been missed

v

v1
v2

s′
∆′

2 ∆′
1

v3

(c) Handling the event

v
v1

v2

v3

s′

(d) A little while later

Figure 17: Flip event: Vertex v moves over the spoke s.

A flip event is the only type of event that does not coincide with a
topological change of the wavefront. During the handling of a flip
event no new straight skeleton arcs or nodes are created.
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The purpose of the flip-event handler is to ensure our kinetic triangu-
lation remains a valid triangulation of the part of the plane not yet
visited by the wavefront.

Consider triangle ∆1 in Figure 17a. As the vertex v moves towards
the spoke s, this triangle will collapse. If we did not do any special
processing and v moves a little bit further we would end up in a
situation like in Figure 17b. This is not a valid triangulation anymore
since clearly it does not partition the plane — there are parts that are
covered by both ∆(v, v1, v2) and ∆(v1, v3, v2).

To maintain a correct triangulation, we need to remove the spoke
s and replace it with the other possible spoke s′ in what is now a
quadrilateral.

In our implementation that boils down to removing both triangles ∆1

and its neighbor ∆2 from the set of triangles and the priority queue.
Then we add new triangles ∆′1 and ∆′2 in their place. We also need to
update the local neighborhood information in the adjoining triangles.

When it comes to time complexity, a flip event is cheap compared to
the two other event types. The dominating cost comes from having to
remove both ∆1 and ∆2 from the priority queue and then adding ∆′1
and ∆′2 to it. The triangle ∆1 is at the top of the heap as it is collapsing
and the triangle whose event we are currently handling. The other
triangle we need to remove, ∆2 is not at the top. We use the heap
position reference that we store with each triangle to find it in the
heap structure (Section 4.1). Each removal and addition operation
can be done at O(log n) cost. Actually creating ∆′1 and ∆′2 and de-
termining their neighborhood relations and updating their neighbors
accordingly has constant cost. Therefore, a flip event requires work
of total complexity in O(log n).

4.6 unbounded triangles

The correctness of the algorithm is based on the fact that each change
in the wavefront’s topology is witnessed by one collapsing triangle
of a kinetic triangulation of the plane. Not much consideration is
given in the original paper on what exactly is meant by the phrase
triangulation of the plane. We will show that a triangulation of just the
convex hull of the input vertex set is not in itself sufficient. We will
then outline possible approaches, including the one we implemented.

triangulating the convex hull . Consider an input graph
G like the one partially shown in Figure 18a. Input edges are bold
while triangulation spokes are dotted.
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w1

s1 w2
s2

w3

v1 v2

(a)

w1

s1
w2

s2
w3

v1 v2

(b)

Figure 18: Subfigure (a) shows part of an input graph and an initial kinetic
triangulation. In Subfigure (b) we see the wavefront some time
after the propagation process has started. Observe that soon ver-
tices v1 and v2 will collide and thus the wavefront topology will
change. However, no triangle will collapse to observe that event!

The wavefront edges w1, w2 and w3 have been emanated from input
edges that are on CH(G), the convex hull of the input. Therefore,
these wavefront edges are also on CH(K0), the convex hull of the
kinetic triangulation at time zero.

If we now start the wavefront propagation process and move forward
in time, the situation will soon look like in Figure 18b. So far no trian-
gle has collapsed, so no event handling was required. Vertices v1 and
v2 are about to collide. However, no triangle exists that will collapse
at the time of the collission to witness the corresponding change of
the wavefront’s topology. This contradicts the main principle for the
correctness of this algorithm.

The problem is that a triangulation of the convex hull of kinetic ver-
tices at time zero does not stay a triangulation of the convex hull once
vertices move. Our existing rules governing updating the triangula-
tion do not keep track of changes to the convex hull and, thus, the
algorithm ends up with areas within CH that are not covered by the
triangulation. This causes us to miss changes in this region.

One possible solution is to not just triangulate the convex hull of the
initial input and then run the propagation process, but to maintain
a full triangulation of the convex hull of the wavefront at all times.
In that case in our example v1 and v2, being neighbors on CH(Kt),
would have shared a triangulation spoke and thus there would have
existed a triangle to witness their collapse.

Two kinds of changes affect CH(Kt):

• Vertices are added to it as a wavefront vertex v moves over a
triangulation spoke e on the convex hull. We would already
notice this in our existing framework as it corresponds to the
triangle that e shares with v collapsing in what is essentially a
flip event. Note that there would not exist a triangle to flip into,
but that should not be a problem as that triangle would have
been removed anyway during the flip-event handling.
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• Vertices can move towards the interior and thus will no longer
be on the convex hull. This is what happened in our example in
Figure 18. This will happen whenever three consecutive vertices
on CH(Kt) become collinear. A new triangle would have to be
added to Kt at that point, consisting of the three vertices that
became collinear. The vertex in the middle would be removed
from CH(Kt).

We chose not to use this approach for two reasons. First, updating
the convex hull when vertices leave the set requires having a sec-
ond source of event times. Second, having vertices leave CH(Kt) re-
quires adding more triangles during the wavefront propagation pro-
cess. We prefer having triangles only be removed and never added as
this makes maintaining our data structures for the triangulation and
priority queue easier and more efficient.

triangulating the plane . Another approach is to triangulate
a portion of the plane that is “big enough”, that is, one that would
cover all parts of the plane that will ever see an event and thus contain
a straight skeleton node.

Unfortunately that seems not promising: One way to do that would
be to select an area that is just big enough. This idea fails due to the
fact that there are no known good heuristics to tell us how far out
straight skeleton nodes will lie. We therefore have no means to know
how much area on top of the input graph our triangulation needs to
cover.

Another strategy might be to pick an area that is truly huge so that
all nodes are almost guaranteed to be in this region. However, this
will result in lots of very thin triangles. Such triangles are hard to
manage on systems using finite-precision floating-point operations.

We have chosen the following approach in our implementation: First,
create a constrained triangulation of the convex hull of the input
graph. Then, for every edge e on the convex hull add one unbounded
triangle, that is, one triangle with e as one edge and two infinite edges
going outwards. All these edges are thought to meet at infinity.

This raises the new question not addressed by Aichholzer and Auren-
hammer of when such unbounded triangles collapse. It is insufficient
to consider an unbounded triangle to collapse only when its finite
edge is collapsing to zero length as this would allow unbound trian-
gles to move to the interior of the wavefront. For an example where
this happens refer to Figure 18 once more. During the initial trian-
gulation process we would have created an infinite triangle for the
convex hull edge w2. The corresponding triangle would not collapse
to witness the crash of v1 into v2, nor would any other.
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Our solution is to consider a projection of the plane R2 to the sphere
S2. We choose the inverse of a stereographical projection from the
north pole onto the plane through the equator. In particular, this
projection then maps the origin to the south pole of S2. The north pole
represents all points at infinity. Every triangle of the triangulation in
R2, unbounded or not, maps to one spherical triangle on S2 whose
edges lie on great circles. Unbounded edges of unbounded triangles
map to finite edges lying on a great circle through the north and
south pole. The triangulation of the plane that we have created maps
to a proper triangulation of the sphere.

This projection does not preserve areas or distances. It does, however,
preserve angles between lines. We do not make use of this property
directly, but we do make use of one of its implications, namely that
the collapse of a spherical triangle on S2 implies its counterpart in R2

has collapsed also.

We now consider an unbounded triangle in R2 to collapse whenever
its corresponding triangle on S2 collapses, that is, when its three ver-
tices lie on a common great circle. The events that can happen when-
ever such a triangle collapses are: (i) edge events where the finite
edges collapses, or (ii) flip events. Both types of events can be han-
dled in a very similar manner to how these events are dealt with
when they involve bounded triangles only. Unbounded triangles can
never be involved in split events.

Naturally, it would be cumbersome to actually have to compute a pro-
jection every time we wanted to re-compute an unbounded triangle’s
collapse time. Fortunately, this is not necessary: An unbounded tri-
angle collapses if and only if its vertices v1, v2 and the north pole lie
on a great circle. This is exactly when v1, v2 and the south pole lie on
a great circle. Mapping things back to the plane, that means that an
unbounded triangle collapses when the triangle ∆(v1, v2, o), where o
is the origin, collapses. Computing the time when two kinetic ver-
tices, v1 and v2, become linearly dependent is straightforward and
integrates well with our handling of bounded triangles.
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5
D E A L I N G W I T H R E A L - W O R L D I N P U T

The algorithm as described by Aichholzer and Aurenhammer [AA98]
has a non-obvious implicit assumption that the input is in general
position. In the case of this algorithm general position means that no
two events ever happen at the same time. When we tested our imple-
mentation during its development on real-world input, this resulted
in problems.

In this chapter we will describe two issues that arise from this assump-
tion as well as how we have extended the algorithm to work in these
special cases. In particular, our solutions do not rely on exact arith-
metic operations and instead work with finite-precision operations
implemented in common computing hardware such as IEEE 754.

5.1 parallel wavefronts

Consider the C-shaped planar straight-line graph depicted in black in
Figure 19. Its emanated wavefront just prior to the first event is shown
in red. The area not yet visited by the wavefront is triangulated in an
arbitrary manner.

v1

v2

∆1

∆2

e1

e2

w2

w1

Figure 19: Vertices v1 and v2 collide in an edge event as ∆1 collapses. At
what speed and in which direction will the vertex that is created
during event handling move?

As the wavefront propagates, the two wavefront edges w1 and w2

will crash into each other. Since they have been emanated from e1
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and e2, the two legs of the letter C that are parallel, the wavefront
edges themselves are parallel as well.

Colliding parallel wavefronts are always witnessed by more than one
triangle collapse. This is easy to see: Before the collapse the two
edges, w1 and w2, span a trapezoidal area. This area has not yet been
visited by the wavefront and thus is covered by a set of triangles of the
triangulation. The wavefront edges w1 and w2 have incident triangles
∆1 and ∆2. Since w1 and w2 share no common vertices, it follows that
∆1 6= ∆2 must hold. Therefore, no less than two triangles cover, at
least in part, the trapezoidal area spanned by w1 and w2. When this
area collapses to zero as w1 and w2 collide, these triangles all collapse
simultaneously.

In Figure 19 for instance, we observe triangles ∆1 and ∆2 collapsing
when the two wavefronts collide. There also is a third, unbounded
triangle to the right of ∆2 but that is not relevant here so we shall
ignore it.

Since there is more than one triangle collapsing at the same point in
time, we also have more than one event happening simultaneously. It
is unclear which of these events should be processed first; the original
algorithm description gives no guidelines.

Assume we handle the collapse of the shaded triangle ∆1 first. Then,
as the triangle collapses, vertices v1 and v2 become incident and we
have an edge event. As described in Section 4.5, edge events replace
the two incident vertices with a new vertex v′, which moves along
the angular bisector of its two incident wavefront edges. The speed
of v′ is defined in such a way that it will keep up with the wavefront
propagating at unit speed.

In the edge event that will happen in Figure 19 these two incident
wavefront edges, however, are parallel and actually overlap at the
time of the event. This implies that v′ will have to move at infinite
speed in order to “keep up” with the wavefront that is propagating
perpendicular to it.

We proceed as follows: We start by handling the edge event similar
to how we would handle an ordinary edge event, that is, we create v′

and update incidence information as required. Then we set a special
flag at the newly created kinetic vertex which indicates it is moving
infinitely fast.

Like any other vertex, such an infinitely fast moving vertex v′ is the
central vertex of a triangle fan of one or more triangles ∆′1, ∆′2, . . . , ∆′n.
The fan at v′ is enclosed by two overlapping wavefront edges — oth-
erwise v′ would not be infinitely fast. That implies that all triangles
of the fan are collapsing at the time the infinitely fast moving vertex
comes into existence.
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We can, therefore, immediately handle the events witnessed by any of
these triangle collapses. Among all these triangles we choose either
∆′1 or ∆′n, depending on which has the shorter wavefront edge to v′.
Let ∆′ be the triangle chosen and let v′′ be the other vertex next to v′

on the wavefront edge. If ∆′ has two wavefront edges incident to v′,
then v′′ shall be on the shorter wavefront edge.

In ∆′ we process an edge event as if v′ had become coincident with
v′′: We add the path from v′ to v′′ as a straight skeleton arc, and
v′ and v′′ merge into a new kinetic vertex, leaving behind a straight
skeleton node. If the newly created kinetic vertex is again infinitely
fast, we repeat this process. Otherwise, the new kinetic vertex is
an ordinary vertex and all incident triangles that were previously in
the triangle fan will have positive area and collapse at a later time or
never. Unless, of course, some other reason exists for them to collapse
now in which case we process these events normally.

If in our example depicted in Figure 19 we would have chosen the
other triangle, ∆2, first, then this too would have resulted in an edge
event creating an infinitely fast moving vertex and processing would
have been identical.

∆1
∆2 ∆3

v

Figure 20: Infinitely fast moving vertices cannot only appear as the result of
edge events.

Observe that infinitely fast moving vertices not only appear during
edge events. The input graph, wavefront, and partial straight skeleton
shown in Figure 20 provide such an example. When the two parallel
wavefronts collide and triangles ∆1, ∆2, and ∆3 collapse, we have a
choice of split events. If we handle triangle ∆2 first, where v crashes
into its opposing wavefront, this will produce two infinitely fast ver-
tices, one moving left, the other moving right. Processing happens
similar to above, except that after the initial split event we will have
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not one but two collapsing triangle fans and we handle both before
processing any other event.

Note that this concept of infinitely fast moving vertices is not a result
of any limited precision computation. The same issues will arise with
exact geometric predicates and computation.

5.2 simultaneous flip-events

For an algorithm to be useful some requirements have long been es-
tablished. One of the more obvious ones is that upon termination the
algorithm should return the correct result. This is called partial cor-
rectness in the literature. A slightly less obvious requirement is that
of total correctness, meaning that the algorithm should terminate for
any given input.

Unfortunately, the algorithm by Aichholzer and Aurenhammer does
not ensure termination on arbitrary input. To see why that is, let us re-
view the argument from Section 3.4.2 for why the triangulation-based
algorithm terminates when the input is in general position. This ar-
gument is made by establishing bounds on the number of events the
algorithm processes as follows:

• Every edge event and every split event reduces the number of
triangles in the kinetic triangulation by exactly one. Edge and
split events do not create new triangles and the flip event does
not create more triangles than it removes. Therefore, the num-
ber of triangles is strictly decreasing with every edge or split
event. This provides an upper bound on the number of edge
and split events.

• We are not able to establish such a tight bound for flip events:
Let n be the number of vertices in the input PSLG and let k be
the number of kinetic vertices seen during the entire propaga-
tion process. We know that k ∈ O(n).
There there can be at most (k

3) different triangles since that is
the number of possible combinations of three elements out of k.

Kinetic vertices move at their constant speed along straight lines.
Three points in the plane moving at constant velocity become
collinear exactly once, twice or never. The area spanned by three
such points is a quadratic polynomial in time — see Section 4.3.
Therefore, a kinetic triangle of three such kinetic vertices will
collapse at most twice.

This implies the number of different collapse times leading to
flip events is in O(n3).
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If an input is in general position, then no two events will ever hap-
pen at the same time. Consequently, the upper bound on different
collapse times yields an upper bound on the number of flip events as
well.

Therefore, the triangulation-based algorithm will terminate provided
the input is in general position.

arbitrary input. What problems do we incur if the input is not
in general position? Obviously the bound on edge and split events
still holds. Unfortunately however, the bound on different collapse
times is no longer useful.

Consider the situation in Figure 21a. Vertices v1 and v2 move up-
wards and vertices v3 and v4 move downwards. When the wavefront
propagation has processed a bit further in the near future, all four
vertices will be collinear and triangles ∆1 and ∆2 will have collapsed.
Let t be that time in the wavefront propagation process.

∆1

v1 v2

v3v4

∆2

(a)

∆′1 ∆′2

v1 v2

v3v4

(b)

Figure 21: A potential flip-event loop: Processing the shaded triangle in Sub-
figure (a) first will result in the configuration from Subfigure (b).
Again processing the event caused by the shaded triangle will
bring us back to the initial triangulation.

At time t, when both ∆1 and ∆2 collapse, no two vertices become
coincident. Furthermore, since neither triangle has a wavefront edge,
we can conclude that each collapse indicates a flip event.

We have not established any guidelines on which event to process first
when several events happen at the same time. Assume we choose to
first process the collapse of the shaded triangle, ∆1. This implies
removing the spoke (v2, v4) and adding the spoke (v1, v3). Triangles
∆1 and ∆2 are replaced with new triangles ∆′1 and ∆′2. This situation
is shown in Figure 21b. Since this procedure also destroys the triangle
∆2, we don’t have to process the event caused by the collapse of ∆2.

However, we have just created two new triangles whose collapse
times need to be computed in order to find out when they will trigger
events and what kind of events those will be. Both ∆′1 and ∆′2 are con-
structed from the same four kinetic vertices that ∆1 and ∆2 had been
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made of, namely v1, v2, v3, v4. These vertices are collinear at time t,
the current time in the wavefront propagation process. Therefore, ∆′1
and ∆′2 will both collapse at time t also. Consequently, no progress is
made in the wavefront propagation process with regard to time and
we have to handle the events triggered by ∆′1 and ∆′2 now.

Again, we have two events that happen at the same time. Should we
decide to process the flip event witnessed by the collapse of ∆′2 now,
we will end up in the very same triangulation as two events ago, in
Figure 21a.

This example shows that it is possible to end up in an infinite loop of
flip events, proving that the algorithm cannot satisfy the requirements
for total correctness.

a different processing order results in progress . Note
that if in either situation we would have picked the other event first,
we would have broken the loop:

∆1

v1 v2

v3v4

v∗

∆3

∆2

(a)

∆1

v1 v2

v3v4

v∗

∆′3
∆∗

(b)

v1 v2

v3v4

v∗

∆′3∆′1
∆′2

(c)

Figure 22: A potential flip-event loop averted. By flipping the correct trian-
gle first, we ensure that we make progress.

Let us consider the same scenario again. In Figure 22a we see the
same initial triangulation, this time including ∆2’s neighbor along
(v3, v4). In order to better see the triangulation, we have once more
drawn the vertices in their positions just prior to becoming collinear.
This is only for demonstrative purposes however; the events we are
considering happen when v1, v2, v3, v4 are all on a common support-
ing line.
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Contrary to the previous processing order, we now start with the flip
event witnessed by ∆2. The longest edge in the triangle is (v3, v4) and
the vertex v2 moves over that spoke. So we replace (v3, v4) with the
spoke (v2, v∗), remove ∆2 and ∆3 from the triangulation and add ∆∗

and ∆′3 instead (see Figure 22b). Since these triangles have a non-zero
area at time t, they are not collapsing right now.

We still have to deal with ∆1. Again, we remove the triangle’s longest
edge, (v2, v4) this time, and replace it with the other diagonal in the
remaining quadrilateral, that is, (v1, v∗). The new triangles thus cre-
ated are labeled in Figure 22c as ∆′1 and ∆′2. These two again have
positive area. Therefore, they will collapse at a point in time different
from t.

Vertices v1 through v4 can continue on their original heading and we
can continue with the wavefront propagation process.

In this different order of event processing the fact that two triangles
collapsed simultaneously did not result in any complications.

The obvious questions thus are how to detect potential flip-event
loops and how to avoid or break out of such loops.

detection. One of the first intuitions might be that as soon as one
re-introduces a triangle previously deleted or sees the same event a
second time, one must be caught in a flip-event loop. Unfortunately
this is not the case.

Consider Figure 23: Let v1 and v6 move downwards and v2, . . . , v5

upwards such that all six vertices lie on the same supporting line at
some point in time, t, without any two vertices becoming incident. At
time t all triangles shown in the triangulation will have degenerated
to line segments on the same supporting line and as such all these
triangles trigger events. All these events will be flip events and han-
dling one such event means we have to replace the longest edge s of
the witnessing triangle ∆ with the other diagonal of the quadrilateral
spanned by ∆ and its neighbor along s.

In Figure 23(i) we show the initial triangulation. The triangle whose
event we process first is indicated by shading and its flipping spoke
is shown dotted. Executing this flip event will lead to the situation
in (ii). We then repeatedly pick one of the collapsed triangles and
process their event.

Particularly note the step from (iv) to (v) that re-introduces the tri-
angle ∆(v1, v2, v3), which was previously present in (i). We indicate
this triangle as hatched. Also observe that at step (viii) we process
the same event as in (i), namely triangle ∆(v1, v2, v3) flipping along
(v1, v3) into triangle ∆(v1, v3, v4).
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(vi) (v) (iv)

(viii)(vii)

Figure 23: Processing the same flip event twice does not necessarily imply
we are in a flip-event loop.

Note that no two triangulations shown in Figure 23 are identical,
meaning that despite re-introducing triangles or repeatedly handling
the same event we are not stuck in an event processing loop.

However, if we continue the processing as shown in Figure 24a we
end up in a situation we have seen before, namely (ii). Assuming
we have a deterministic algorithm which, given a triangulation with
more than one collapsed triangle, always picks the same event to
process first, we are now truly stuck in an eternal flip-event loop.

Conversely, if we select the top triangle, ∆ = ∆(v1, v5, v6), as the
one we want to process next, then we flip towards the outside of the
collapsed region — see Figure 24b. Let ∆′ be the neighbor of ∆ along
(v1, v6) and let v∗ be the vertex of ∆′ that is not v1 or v6. This vertex is
not collinear with v1, . . . , v6. Since ∆′ has positive area, the flip event
will make real progress and we have averted this particular flip-event
loop.

We have shown that the detection of flip-event loops is not as simple
as looking for whether we process the same event a second time, or
re-introduce a triangle. A procedure that would obviously work is
to compare a flip event’s resulting triangulation with all previous tri-
angulations. If we have arrived at an identical triangulation and our
selection process is deterministic, we are stuck in a loop. However,
comparing complete triangulations is an expensive process.
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Figure 24: Depending on which triangle we process next, we (a) either end
up in a loop or (b) we avoid being stuck in a flip-event loop.

Before we return to the topic of detecting loops in Section 5.2.2, let
us first discuss a method to avoid them entirely if exact arithmetic
operations are available.

5.2.1 Avoiding Flip-Event Loops with Exact Arithmetic

Implementing the triangulation-based algorithm on a system that af-
fords us exact arithmetic operations provides us with the following
capabilities:

• We know the exact collapse time t for any triangle.

• In particular, if more than one triangle collapses at a specific
time t, we can produce an exhaustive list of all triangles that
collapse at t.

• We can always correctly determine the type of an event since
we can tell exactly whether two vertices have become incident,
indicating an edge event, or not, indicating a split or flip event.

• We can compare lengths of spokes of triangles at a time t and
correctly identify the longer one.

With these capabilities we can devise an algorithm that will tell us
which event to process first if more than one happens at the same
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time. This algorithm will have the property that it avoids flip-event
loops inherently, without having to spend any effort on detecting and
then escaping them.

Algorithm 3 Decide which event to handle next

1: procedure choose_next_event(E)
. E . . . non-empty set of events happening now.

2: if E contains non-flip events then
3: Choose an arbitrary non-flip event c ∈ E.
4: return c.
5: else if E contains only flip events then
6: Let s(e) be the flipping spoke of an event e.
7: Let |s(e)| be its length.
8: Choose c ∈ E such that |s(c)| ≥ |s(e)| for all e ∈ E.

. e is the flip event with the longest flipping edge.
9: return c.

10: end if
11: end procedure

Why does Algorithm 3 provide this property? Let E be the set of
events that are happening right now because their corresponding tri-
angle collapsed. We already have classified them and we can now
distinguish between two cases: (i) there are edge or split events in E
and (ii) E consists entirely of flip events.

If E contains edge or split events, then picking any such event guar-
antees progress. Recall that processing a non-flip event will reduce
the number of triangles in our kinetic triangulation by one. Since the
number of triangles never grows, a monotonicity argument shows
that this moves us forward — we can never again end up in the state
prior to having processed this event.

In the other case, E consists only of flip events. We will again con-
struct a monotonicity argument.

Let ∆(e) be the collapsed triangle corresponding to an event e ∈ E,
and let s(e) be the flipping spoke of e. According to the rules of flip
events, s(e) is the longest edge of ∆(e). Since e is a flip event and not
an edge event, we know that s(e) is unique in ∆(e). Furthermore, let
∆(E) = {∆(e)|e ∈ E} be the set of all triangles collapsing right now.

Chose event c ∈ E such that |s(c)|, the length of s(c), is maximal for
all events. Let ∆∗ be the neighbor of ∆(c) along s(c).

• If ∆∗ 6∈ ∆(E), then this triangle must have positive area. There-
fore, none of its vertices are coincident. We also know that none
of the vertices of ∆(c) vertices are coincident since this collapse
triggered a flip event and not an edge event. Thus, flipping
s(c) to the other diagonal of the quadrilateral spanned by ∆(c)
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and ∆∗ will remove these two triangles from the kinetic trian-
gulation and add two new triangles with positive area. This
means that they will collapse not now but at a later time, if at
all. We have reduced the number of triangles collapsing at this
particular time and have, therefore, made progress.

• In the case of ∆∗ ∈ ∆(E) the argument is slightly different: The
triangle whose event we are processing right now is ∆(c). Let its
vertices be v1, v2, v3 and let the vertices of ∆∗ be v1, v3, v∗. Note
that ∆∗ is collapsing as well. We know that all four vertices,
v1, v2, v3, and v∗, are collinear and we know that v1, v2, v3 are
pairwise distinct and v1, v3, v∗ are as well.

v1
v2

v3

v∗

v1
v2

v3

v∗

∆(c)
∆∗

Figure 25: Flipping the longest edge between two collapsed triangles will
result in a shorter edge separating the new triangles.

The longest edge of any collapsing triangle is s(c) = (v1, v3).
Therefore, v2 is on the line segment between v1 and v3 and,
likewise, v∗ is in between v1 and v3. (The vertices v2 and v∗ may
or may not be coincident — it does not affect our argument.)
This implies that the length of (v2, v∗) is less than the length of
s(c) = (v1, v3), that is, |(v2, v∗)| < |s(c)|. (See Figure 25.)

Therefore, replacing s(c) with (v2, v∗) will reduce the length of
the longest edge of the set of collapsing triangles or, if there
were more than one edge of maximal length, it will reduce the
number of edges that have maximal length.

Note that since this processing happens at a fixed time t, all ki-
netic vertices have a constant location on the plane. This implies
that there are only a fixed, finite number of possible edges and
discrete edge lengths. Thus, the property just presented can be
used to support a monotonicity argument.

Summarizing, the procedure outlined in Algorithm 3, ensures that
we either:

(i) reduce the number of triangles in the kinetic triangulation over-
all if there are non-flip events,

(ii) reduce the number of triangles currently collapsing if we flip
towards a non-collapsing triangle, or

(iii) reduce the number of edges of maximal length or reduce the
maximal length over all edges in case we flip within the col-
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lapsed triangles, by replacing an edge of maximal length with a
shorter one.

Combined, these ensure that after a finite number of steps we have
processed all events at a particular collapse time t and can proceed in
the wavefront propagation process.

Observe that this approach does not add any additional run-time
complexity. The sort key for our priority queue, which so far has only
consisted of the collapse times of triangles, can easily be extended to
be a multi-value key which includes factors that determine ordering
of events that happen at the same time, namely event-type and length
of flip edge, if applicable. This will ensure events are processed in an
order which guarantees the algorithm will terminate.

5.2.2 Flip-Event Loops with Finite Precision

Unfortunately for our implementation, we cannot make use of the
method described in the previous section. Our implementation can
use either standard IEEE 754 double precision floating-point opera-
tions or, if requested by the user, MPFR’s arbitrary precision arith-
metic [FHL+

07].

Due to rounding errors introduced by finite-precision computation,
correct ordering of events—or even establishing that several events
happen at the same time—is very error prone. We therefore have
developed the following procedure, first described in [PHH12], to
detect and resolve potential flip-event loops.

detection. We keep a journal J of tuples (t, ∆) where t is a point
in time in the wavefront propagation process and ∆ is a triangle as
specified by its set of three kinetic vertices.

For every flip event e that we process, we append to J the tuple
(t(e), ∆(e)). As before, ∆(e) is the collapsed triangle corresponding
to e, and t(e) is its collapse time. When we process an edge or a split
event, we clear the journal. Therefore, J is a list of of flip events since
the last non-flip event, sorted sequentially by processing order.

Additionally, we maintain a search structure S that allows us to find
a given vertex triple ∆ in J.

Whenever we process a flip event e, we consult S to check whether
(t(e), ∆(e)) is in our journal already. If we are in a flip-event loop,
then this must be the case. As discussed previously (see Figure 23),
the converse is not necessarily true. We are unable to tell if we are
truly in a flip-event loop but regardless, if we find the event has been
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processed once before we conduct the following resolution procedure.
No damage is caused in case of a false alarm.

resolution. Let T1 be the first occurrence of (t(e), ∆(e)) in J and
let T2 be the occurrence we just inserted. If we had exact arithmetic
operations, then the time components of T1 and T2 would be the same
and we could infer that the clock had not progressed between these
two events. Therefore, the time components of all flip events between
T1 and T2 would have to be identical. On a finite-precision system we
have no such guarantee as rounding errors might have introduced
slight variations in the time component. Nevertheless, we declare
that all these events happened at the same time.

Next, we revert all the events logged in J starting at T2 all the way
back to T1. Note that since only flip events are recorded in J, this will
not bring back any triangles already removed, annihilate any kinetic
vertex just created or resurrect any old kinetic vertices. During the re-
vert steps we mark all triangles that caused a flip event as having col-
lapsed. We also mark all other triangles for which we can infer they
have collapsed from how they were involved in flip events. We know
that the set of collapsed triangles so marked will form one or more
polygons which each have degenerated to straight-line segments.

Let P be the polygon that contains ∆(e). First, we replay all the flip
events of triangles not in P — they are not part of the potential loop
we try to resolve here. Care must be taken to correctly update J and
S during the revert and replay operations.

v1 vk

v4

v3 v5 v6

e

ve

C(e)

∆e

v7

v2

Figure 26: Re-triangulating a collapsed polygon as shown is one step of our
flip-event-loop resolution procedure.

The polygon P has collapsed to a straight-line segment. Let l be the
supporting line of that segment and let v1, v2, . . . , vk be the vertices of
P, sorted along l. We construct a path p = (v1, v2, . . . , vk). Since the
vertices vi are sorted along l, this path will be monotone with respect
to l. We update the triangulation of P such that all edges (vi, vi+1) of
p are triangulation spokes within P.
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This will partition P into a set of faces that are each bounded by
exactly one external edge e on the outside and edges of p on their
remaining sides.

Next, we also consider all triangles ∆e which are neighboring P along
edges e which are not part of p. Consider a particular edge e and its
incident outside triangle ∆e as shown in Figure 26. Let ve be the vertex
opposite of e in ∆e. We re-triangulate in such a way that the area
consisting of ∆e and the polygon face bounded by e and p becomes a
triangle fan about ve. In our example this polygon is made up of the
vertices v4, v5, v6, v7, and ve.

We require that by following the events logged in our journal J one ar-
rives at the target triangulation which we just described. One option
is to re-triangulate P and its neighbors without taking the existing tri-
angulation into consideration and then apply an algorithm described
by Hanke et al. [HOS96]. This algorithm produces, given two differ-
ent triangulations of the same point set, an order of flips to transform
one triangulation to the other. We could run this algorithm and ap-
pend the flip sequence to J.

In practice we observed that a naive incremental algorithm works
satisfactory: Using again the example polygon in Figure 26 we start
by building a triangle fan of the first face centered at v1. We do
this by repeatedly flipping the edge (v2, vi) of the triangle incident
at (v1, v2) until (v1, v3) is a triangulation spoke. We then continue
to repeatedly flip (v3, vi) of the next triangle incident at (v1, v3) and
so on. Whenever we get to a vertex that “changes sides” (such as
v4 in our figure), we have to flip away any extra spokes incident at
the triangle fan’s center. When no extra spokes are left, we will have
completed this face. We then start a new triangle fan for the next face.
Once we have adapted the triangulation of P to our requirements
using just flip operations, we can likewise move the center of each
triangle fan to the ve vertices outside of P using straight forward
flips.

The flips we are executing in order to arrive at our desired triangu-
lation are recorded in J in the same manner as any flip due to a flip
event would be, with one exception: Let T∗ be the first entry we
add in the reconfiguration procedure. All records we subsequently
append will have a pointer to T∗. This allows us to infer just by look-
ing at the journal that all these events happened at what we consider
to be exactly the same moment. Its purpose will become apparent
shortly.

We resume with normal event processing after we re-triangulated P
and its neighbors and J and S were updated accordingly.

Assume now that one of the triangles ∆e, that were adjacent to P
and that we extended our triangulation into, also had collapsed at
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the same time and ve was collinear with P. This fact was not known
when we previously applied our resolution procedure because that
triangle had not shown up in the loop. If our loop detection subse-
quently triggers because we are processing an event whose tuple T
is already in the journal, we proceed as follows: If T has no back-
pointer, we process the loop normally as just described. If, however,
T has a back-pointer to a T∗, indicating it was part of a flip-event reso-
lution attempt once before, we change the procedure slightly. Instead
of rolling back to just T, we roll back all the way to T∗ and run the res-
olution algorithm from there. This ensures that the new flip polygon
P′ includes the old polygon P and we have even more vertices that
we know are collinear. Since there are only finitely many triangles,
enlarging the flip polygon each time we run into the same loop again
ensures we will eventually find the maximal polygon. This polygon
will resolve properly with the procedure described.

finding the collapsed polygon P . We mentioned that while
reverting the journal we mark triangles that are involved in flip events
to find find a set of triangles which have collapsed to a straight-line
segment. We describe this process in more detail now.

We start the revert process with having none of the triangles in the
kinetic triangulation K being tagged.

Consider a flip event e where a triangle ∆1 = (v1 , v2 , v3 ) collapses
(Figure 27). Let ∆2 = (v1 , v3 , v4 ) be its neighbor along its longest
edge, that is, ∆1 will flip into ∆2. Both triangles get removed by
that flip event and replaced with triangles ∆ ′1 = (v1 , v2 , v4 ) and
∆ ′2 = (v2 , v3 , v4 ).

v1

v2
v3

v4

v1

v2
v3

v4

flip e∆2

∆1

∆′
2∆′

1

Figure 27: Flip event e replaces triangles ∆1 and ∆2 with ∆′1 and ∆′2.

Now consider how to roll back e: ∆′1 and ∆′2 are both in K prior to
the revert. If neither is tagged, we undo the flip, and tag ∆1 which we
know has collapsed—it caused the flip event after all (Figure 28a).

If, however, ∆′1 or ∆′2 (or both) are already tagged, then after the revert
we tag both ∆1 and ∆2 (Figure 28b). Why is this correct? Without
loss of generality let us assume that ∆′1 was tagged before the revert,
and thus vertices v1, v2, v4 are known to be collinear. Since ∆1 has
collapsed, vertices v1, v2, v3 are also collinear. This implies that all
four vertices, v1, v2, v3, v4 are collinear because v1 6= v2. Therefore, we
can tag both triangles, ∆1 and ∆2.
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Figure 28: Reverting e: The • symbol indicates whether a triangle is tagged,
that is, we know it has collapsed. (a) If prior to the revert neither
triangle is tagged, then only the one having caused the event gets
tagged after the revert. (b) If previously either triangle is tagged,
then both triangles are subsequently marked.

We construct P incrementally by adding tagged neighbors to a grow-
ing set of triangles, in reminiscence of how flood-fill works: Let ∆ be
the triangle that we saw twice in J and that caused us to do this res-
olution procedure. Then we start with P0 = {∆}. In the incremental
step, we set Pi+1 = Pi ∪N (Pi) where N (Pi) is the set of triangles in K
that are both tagged and that share an edge with a triangle already in
Pi. This process ends once Pi no longer gets larger, i.e. when Pi+1 = Pi
for a particular i. Then P = Pi and all vertices of P are collinear.

wavefront edges on P . Recall how we extended the triangula-
tion of P to incorporate the areas spanned by triangles adjacent to P
along edges e. These edges were the the border edges of the polygon
minus those edges covered by p, the monotone path we constructed
from v1 to vk .

During the reconfiguration we may discover that one such edge e
may not be a triangulation spoke after all but in fact a wavefront
edge. As such, there would be no adjacent triangle ∆ e to extend the
triangulation into.

Let e = (v i , v j ) with i < j. As e is not on p, there must be a vm with
i < m < j. That is, vm is in between v i and v j on their supporting
line, on the other side of the polygon.

We can, therefore, schedule an immediate split event where vm splits
the wavefront edge (v i , v j ). Since split events reduce the number
of triangles in the overall triangulation, we again have a guaranteed
progress of our algorithm.
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sorting vertices along the collapse line . In order to
build p, we need to sort the vertices along P’s supporting line. If
we had exact arithmetic operations, then all the vertices would in-
deed be on the exact same line and all collapse times would have
been identical. Due to rounding errors when using finite-precision
operations however, we may have slight variations in collapse times
and not all vertices will line up exactly.

To arrive at a sort order, we proceed as follows: Let tmin and tmax be,
respectively, the minimum and maximum collapse time of the trian-
gles in P. We then determine a fitting straight-line Lmin of the vertices
v1, . . . , vk at time tmin using a least-square fitting. We construct Lmax

accordingly. Next, we sort the vertex set twice. Once with respect to
Lmin and once with respect to Lmax. If the two orders agree no special
handling is necessary and we proceed as discussed previously. If the
two sort orders do not agree, then there will be at least two vertices,
vi and vj, whose relative order has changed. Using exact operations
these vertices would in fact be coincident. We update the triangula-
tion to enforce a spoke s between vi and vj and then force an edge
event at both triangles incident to s. Consequently, the number of
triangles in the triangulation is decremented and any ongoing loop is
broken.
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6
E X P E R I M E N TA L R E S U LT S

The upper bound on run-time complexity for the triangulation-based
algorithm has been discussed in Section 3.4.2. Of course, these are
theoretical, worst case bounds. We studied the actual count of flip
events in real applications of this algorithm. Furthermore, we investi-
gated the number of affected triangles in edge and split events.

We extended Surfer with extensive tracing code which can provide us
with various data points about our implementation’s behavior for a
given input. In particular, we count the number of events of each type:
edge-, split-, and flip-event. We further differentiate between kinds of
edge events: (i) cases where all three edges of a triangle collapse at
the same time, (ii) collapsing triangles with two wavefront-edges, and
(iii) other edge events.

We tested Surfer on about twenty thousand polygons and PSLGs,
with up to 2.5 million vertices per input. Both real-world and con-
trived data of different characteristics was tested, including CAD/
CAM designs, printed-circuit board layouts, geographic maps, space
filling curves, star-shaped polygons, and random polygons generated
by RPG [AH96], as well as sampled spline curves, families of offset
curves, font outlines, and fractal curves. Some datasets contain also
circular arcs, which we approximated by polygonal chains in a pre-
processing step.

6.1 edge and split events

In theory, each edge or split event can affect as many as O(n) tri-
angles. As mentioned in Section 3.4.2, Huber presented a convex
polygon that, with a given triangulation, forces Ω(n) many triangles
to be updated Ω(n) many times. See [Hub12, page 48] and Figure 10.

In practice, we have observed few, but still some, cases where a single
edge event affects thousands of other triangles. The percentage of our
test inputs which cause such extreme edge events is relatively small
however. See Figure 29 and Figure 30.

Even in inputs that have such expensive edge or split events the total
number of expensive events appears to be small. Indeed, we have
found that, on average, the count of triangles we have to update is
around one or two and well below ten for almost all inputs tested. We
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Figure 29: Maximum number of triangles affected by a single edge event.
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Figure 30: Maximum number of triangles affected by a single split event.
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6.2 flip events

show this in Figure 31, where we plot number of affected triangles per
non-flip event on the y-axis against different input sizes on the x-axis.

There still are, however, occasional outliers where we have to update
more than just a single digit number of triangles per event. A cursory
investigation suggests that densely sampled arcs or line segments are
the prime cause for both, high maximum affected triangles per sin-
gle event and high average affected triangles. In contrast, random
polygons seem to be generally well behaved.
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Figure 31: Average number of affected triangles per edge or split event

6.2 flip events

The upper bound on flip events is O(n3) when input is in general
position. There also is a known lower bound of Ω(n2) forced by a
particularly contrived input. See Section 3.4.2 and Section 5.2. The
theoretical cost of handling flip events dominates all other processing
in the algorithm. Therefore it is of particular interest how this number
behaves in practice.

Our experiments provide strong experimental evidence that we can
indeed expect a linear number of flip events for all practical data. In
Figure 32 we show the number of flip events per input vertex for
different input sizes n arranged on the x-axis.

On average, Surfer had to deal with a total of n/4 flip events. Over
the entire set of twenty-thousand inputs only a dozen cases, mostly

63



experimental results

102 103 104 105 106

input size (number of vertices)

0

1

2

3

fli
ps

/n
um

v

Figure 32: Number of flip events, normalized to input size.

sampled arcs, required more than 2n flip events. This clearly demon-
strates the linear nature of this number in practice.

It is interesting to note the clusters in this plot. Some clusters, but
not all, correspond to different types of input. For instance, a closer
inspection of the test results revealed that synthetic “random” poly-
gons generated by RPG require significantly more flips than random
axis-aligned polygons.

6.3 runtime behavior

In the previous sections we provided experimental evidence that, on
average, the number of flip events is linear in the input size and that
the number of triangles affected by edge and split events is, again on
average, constant. This suggests that in practice the overall running
time of the algorithm should approximately follow an n · log n law.

We conducted timing tests of Surfer using a 64-Bit Linux system run-
ning on an Intel Core i7-980X CPU clocked at 3.33 GHz. Surfer was
compiled by GCC 4.4.3.

By default, Surfer uses standard IEEE 754 double-precision floating-
point arithmetic, but it can be built to use the MPFR library [FHL+

07,
MPF], enabling extended-precision floating-point operations. When
using floating-point arithmetic, it computes the straight skeleton of
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inputs with a million vertices in about ten seconds. In particular, our
tests confirm an O(n log n) runtime for practical data, including any
time spent on handling degenerate cases.

comparison to other skeletonizers . We compared the run-
time of Surfer against both Bone, the fastest other known implemen-
tation of a straight skeleton algorithm by Huber and Held [HH11],
and against Cacciola’s implementation [Cac12] that is shipped with
the CGAL library, version 4.0 [CGA]. Input to the latter was confined
to polygonal data as the implementation cannot handle generalized
PSLGs. All three codes are single-threaded.
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Figure 33: Runtime comparison between CGAL (black), Bone (green), and
Surfer (blue).

As can be seen in Figure 33, Surfer consistently outperforms Bone by
a factor of about ten. Furthermore, it is by a linear factor faster than
the CGAL code. In particular, for inputs with 104 vertices CGAL
already takes well over one hundred seconds whereas Surfer runs in
a fraction of one second. Note, though, that the CGAL code uses its
recommended exact-predicates-inexact-constructors kernel and, thus,
could be expected to be somewhat slower. However, its timings do
not improve substantially when run with an inexact kernel.

Further analysis revealed an average runtime (in seconds) of 5.8 ·
10−7n log n for Surfer, 1.5 · 10−5n log n for Bone, and 4.5 · 10−7n2 log n
for the CGAL code.
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Figure 34: Memory usage comparison between CGAL (black), Bone (green),
and Surfer (blue).

Figure 34 shows our measurements of memory consumption. These
confirm the expected linear memory footprint of Surfer. Its memory
usage is similar to that of Huber and Held’s Bone, while the CGAL
code, due to its algorithmic design, exhibits a worst-case quadratic
behavior.

6.4 phases of the algorithm

We analyzed Surfer’s run-time behavior to learn where it spends most
of its time. For this purpose we have divided a run of the algorithm
into the following phases:

(1) pre-processing: In this step Surfer scales and translates the input
graph such that all vertices lie in a square of edge length two
centered at the origin.

(2) triangulation: The normalized input graph is handed over to
the triangulation subroutine. In Surfer’s current version that is
Shewchuk’s triangle [She96].

(3) kinetic triangulation: Once we have a constrained triangulation
of the input, we set up the initial wavefront and the kinetic
triangulation K.
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(4) initial schedule: We compute the collapse times of all triangles
in K and do a preliminary classification of the event type each
collapse will cause. We then set up the initial priority queue.

(5) propagation process: In this phase we simulate the wavefront
propagation process. We handle events as they occur and up-
date the wavefront’s topology accordingly.

(6) post-processing: When the wavefront propagation has finished,
we extract the straight skeleton from the set of wavefront ver-
tices.

From our test runs on the set of twenty thousand inputs we selected
runs with running time in excess of one second. For those we consid-
ered time spent in each of the six phases in relation to total run-time.

Our analysis shows that, on average, approximately a quarter of to-
tal run-time is spent in the triangulation code and a bit over half
is needed for the actual simulation of the wavefront propagation pro-
cess. Furthermore, we observe that there are a few inputs where most
of the computation time is spent creating the initial triangulation. We
have shown two samples in Appendix A: Figure 46 and Figure 47.
The four other phases, pre-processing, setting up the kinetic triangu-
lation and initial schedule, and post-processing vary only lightly. The
box plot in Figure 35 summarizes the results.

6.5 running with extended precision

Surfer can be built to use the MPFR library [FHL+
07, MPF]. This

library enables our code to use extended-precision floating-point op-
erations, with a number of significant digits far in excess of the 52 bit
generally available when using standard IEEE 754 double-precision
arithmetic.

Obviously, higher precision arithmetic incurs a certain penalty both in
runtime and space requirements. We benchmarked the performance
and memory footprint of Surfer when using the MPFR backend at
different precisions.

In Figure 36 we plotted the runtime of Surfer at different precisions,
normalized to the runtime when using standard IEEE 754 floating-
point arithmetic. Our data shows that for instance running at an
MPFR precision of 100 takes about ten times as long as running in
IEEE 754 mode; at a precision of 1000 the slow-down is already 25

and it is 110 at 4000 bits. The slow-down seems to follow an n
√

n
law due to the increased complexity of doing multiplications with a
larger number of digits.
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Figure 35: Fraction of time spent in each phase of Surfer. In this plot, a box
is drawn between each set’s first and third quartile. A horizontal
bar is shown at the median. Whiskers are extended up and down
from the third and first quartile to cover data within another 1.5
times the interquartile range (the distance from the first to the
third quartile). Any outliers are plotted individually.

We also collected data on increased memory requirements when run-
ning with MPFR. See Figure 37. Here, too, numbers are normalized
with regard to the memory requirements of Surfer in standard double-
precision floating-point mode. As expected, memory utilization goes
up linearly with increased precision: at an MPFR precision of 100

bits the memory requirement is about 4 times that of Surfer’s standard
mode of operation; at 1000 bits we observed a factor of approximately
10 and at 4000 bits that factor is 30.
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Figure 36: Slowdown when using Surfer’s MPFR backend compared to its
IEEE 754 double-precision backend.

0 1000 2000 3000 4000 5000
MPFR precision (bits)

0

10

20

30

40

Bl
ow

up
fa

ct
or

Figure 37: Memory use increase when using Surfer’s MPFR backend com-
pared to its IEEE 754 double-precision backend.

69





7
C O N C L U S I O N

We studied Aichholzer and Aurenhammer’s algorithm to construct
the straight skeletons of planar straight-line graphs in detail.

We highlighted shortcomings of the original algorithm when input
is not in general position and we presented solutions that work both
with arbitrary and with finite precision arithmetic.

We implemented Aichholzer and Aurenhammer’s algorithm and our
extensions. Furthermore, we performed extensive tests on our im-
plementation. We presented strong experimental evidence that the
number of flip events, which are bound by O(n3) in theory, are linear
in practice.

Our code runs in O(n log n) time in practice and O(n) space on all
tested inputs. It clearly is the fastest straight skeleton code we are
aware of.
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A
G A L L E RY

In the following figures the input graph is always shown in black
while the straight skeleton is drawn in blue. Some input graphs were
provided by Martin Held.

a.1 polygons

Figure 38: Borders of Austria.

Figure 39: A random polygon.
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Figure 40: A printed circuit board outline.

Figure 41: A Horse.
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A.2 polygons with holes

a.2 polygons with holes

Figure 42: A polygon with one hole. Sampled arcs induce these sunshine-
ray like patterns in the straight skeleton.

Figure 43: Several sampled circular holes in a square.
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Figure 44: More circular holes.

a.3 other straight-line graphs

Figure 45: Almost a polygon with two holes – note the missing vertical input
edge.
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A.3 other straight-line graphs

Figure 46: A set of spirals. The more densely sampled versions of these
data sets cause our implementation to spend about 70 % to 80 %
of its time in the triangulation phase and only very little in the
wavefront propagation process — see Section 6.4.

Figure 47: Stars are a second kind of input type which cause more work dur-
ing triangulation than in actually computing the straight skele-
ton.
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a.4 propagation process

Figure 48: Wavefront propagation while computing the straight skeleton: In
the first figure (top left) we show the input graph with a triangu-
lation. The second figure (top right) shows the wavefront in red
after propagation has started and the traces of wavefront vertices
in blue. The following figures show the wavefront and triangula-
tion at the collapse times of triangles, that is, whenever we have
handled an event and a wavefront vertex has been stopped. The
last figure shows the final straight skeleton.
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